4.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),a1=$\frac{1}{2},且{a_3}^2=4{a_2}{a_6}$.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+…+log2an求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和.

分析 (Ⅰ)由已知求出等比數(shù)列的公比,代入通項(xiàng)公式得答案;
(Ⅱ)把數(shù)列{an}的通項(xiàng)公式代入bn=log2a1+log2a2+…+log2an,求出bn,然后由裂項(xiàng)相消法求$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和.

解答 解:(Ⅰ)設(shè)數(shù)列{an}的公比為q,由${{a}_{3}}^{2}=4{a}_{2}{a}_{6}$,得${{a}_{3}}^{2}=4{{a}_{4}}^{2}$,
∴${q}^{2}=\frac{1}{4}$,由條件可知,q>0,∴q=$\frac{1}{2}$.
∵${a}_{1}=\frac{1}{2}$,∴${a}_{n}=\frac{1}{{2}^{n}}$;
(Ⅱ)bn=log2a1+log2a2+…+log2an
=-(1+2+…+n)=-$\frac{n(n+1)}{2}$.
故$\frac{1}{_{n}}=-\frac{2}{n(n+1)}=-2(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{_{1}}+\frac{1}{_{2}}+…+\frac{1}{_{n}}=-2[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})]$
=$-\frac{2n}{n+1}$.
∴數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和為$-\frac{2n}{n+1}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了裂項(xiàng)相消法求數(shù)列的和,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.己知a、b∈R且a>b,則下列不等關(guān)系正確的是( 。
A.a2>b2B.|a|<|b|C.$\frac{a}$>1D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=|x+3|-|x+a|是R上的奇函數(shù).
(1)求實(shí)數(shù)a的值; 
(2)畫(huà)出函數(shù)f(x)的圖象;  
(3)寫(xiě)出函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了調(diào)查某高中學(xué)生每天的睡眠時(shí)間,現(xiàn)隨機(jī)對(duì)20名男生和20名女生進(jìn)行問(wèn)卷調(diào)查,結(jié)果如下:
睡眠時(shí)間(小時(shí))[4,5)[5,6)[6,7)[7,8)[8,9)
人數(shù)15653
男生
睡眠時(shí)間(小時(shí))[4,5)[5,6)[6,7)[7,8)[8,9)
人數(shù)24842
女生
(I)現(xiàn)把睡眠時(shí)間不足5小時(shí)的定義為“嚴(yán)重睡眠不足”,從睡眠時(shí)間不足6小時(shí)的女生中隨機(jī)抽取3人,求此3人中恰有一人為“嚴(yán)重睡眠不足”的概率;
(II)完成下面2×2列聯(lián)表,并回答是否有90%的把握認(rèn)為“睡眠時(shí)間與性別有關(guān)”?
睡眠時(shí)間少于7小時(shí)睡眠時(shí)間不少于7小時(shí)合計(jì)
男生
女生
合計(jì)
(${x}^{2}=\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n+1-2,數(shù)列{bn}滿足bn=n•an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)y=2sin($\frac{x}{2}$-$\frac{π}{4}$)
(1)用“五點(diǎn)法”作出函數(shù)圖象;
(2)指出它可由函數(shù)y=sinx的圖象經(jīng)過(guò)哪些變換而得到;
(3)寫(xiě)出函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且a2+c2-b2+ac=0.
(1)求角B的大;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知P為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{8}$=1上任意一點(diǎn),AB為⊙T:(x+1)2+y2=1的任意一條直徑,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍是[3,15].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知數(shù)列{an}的通項(xiàng)公式為${a_n}=\left\{\begin{array}{l}-n,\;n≤4\\ \sqrt{{n^2}-4n}-n,\;n>4\end{array}\right.(n∈N*)$,則$\lim_{n→+∞}{a_n}$=( 。
A.-2B.0C.2D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案