8.已知$\overrightarrow{e_1}=(1,0)$,$\overrightarrow{e_2}=(0,1)$,$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$,則$|\overrightarrow a+\overrightarrow b|$=( 。
A.$3\sqrt{2}$B.$4\sqrt{2}$C.$5\sqrt{2}$D.$5\sqrt{3}$

分析 根據(jù)平面向量的坐標(biāo)運算,求出向量$\overrightarrow{a}$+$\overrightarrow$以及它的模長即可.

解答 解:∵$\overrightarrow{e_1}=(1,0)$,$\overrightarrow{e_2}=(0,1)$,
∴$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$=(3,0)-(0,2)=(3,-2),
$\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$=(4,0)+(0,1)=(4,1),
∴$\overrightarrow{a}$+$\overrightarrow$=(7,-1)
∴$|\overrightarrow a+\overrightarrow b|$=$\sqrt{{7}^{2}{+(-1)}^{2}}$=5$\sqrt{2}$.
故選:C.

點評 本題考查了平面向量的坐標(biāo)運算及其應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,斜率k(k≥0)的直線l過橢圓中心O且與橢圓的兩個交點從左至右為E,G,與直線l垂直的直線m與橢圓的兩個交點,從上至下為F,H,當(dāng)四邊形EFGH為正方形時面積為$\frac{8}{3}$.
(1)求橢圓的方程;
(2)求四邊形EFGH的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)數(shù)列{an}的前n和為Sn,滿足Sn=an+1+n2-3,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)猜想數(shù)列{an}的通項公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=(m-2)x2+(m2-4)x+m是偶函數(shù),函數(shù)g(x)=-x3+2x2+mx+5在(-∞,+∞)內(nèi)單調(diào)遞減,則實數(shù)m等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集$U=\left\{{({x,y})\left|{y=x+1,x,y∈R}\right.}\right\},M=\left\{{({x,y})\left|{\frac{y-3}{x-2}=1}\right.}\right\}$,則∁UM=(  )
A.B.{(2,3)}C.(2,3)D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列四個命題中正確的有①②③④.(填所有正確命題的序號)
①函數(shù)y=x與y=sinx的圖象恰有一個公共點;
②函數(shù)y=lnx與y=sinx的圖象恰有一個公共點;
③函數(shù)y=$\frac{1}{x}$與y=sinx的圖象有無數(shù)個公共點;
④函數(shù)y=ex與y=sinx的圖象有無數(shù)個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,在三棱錐P-ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點.已知PA⊥AC,PA=6,BC=8,DF=5.
求證:
(1)直線PA∥平面DEF;
(2)PA⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{x^2}{9}+\frac{y^2}{4}=1$.
(1)求橢圓C的長軸和短軸的長、離心率、焦點坐標(biāo);
(2)已知橢圓C上一點P到左焦點的距離為4,求點P到右準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=log4(ax-2x•k)(a>0,a≠1,k為常數(shù)),求f(x)的定義域.

查看答案和解析>>

同步練習(xí)冊答案