【題目】對(duì)于任意實(shí)數(shù)x,[x]表示不超過(guò)x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義在R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為

【答案】44
【解析】解:∵[x]表示不超過(guò)x的最大整數(shù),A={y|y=f(x),0<x<1},當(dāng)0<x< 時(shí),0<2x< ,0<4x< ,0<8x<1,f(x)=[2x]+[4x]+[8x]=0+0+0=0;
當(dāng) ≤x< 時(shí), ≤2x< , ≤4x<1,1≤8x<2,f(x)=[2x]+[4x]+[8x]=0+0+1=1;
當(dāng) ≤x< 時(shí), ≤2x< ,1≤4x< ,2≤8x<3,f(x)=[2x]+[4x]+[8x]=0+1=2=3;
當(dāng) ≤x< 時(shí), ≤2x<1, ≤4x<2,3≤8x<4,f(x)=[2x]+[4x]+[8x]=0+1+3=4;
當(dāng) ≤x< 時(shí),1≤2x< ,2≤4x< ,4≤8x<5,f(x)=[2x]+[4x]+[8x]=1+2+4=7;
當(dāng) ≤x< 時(shí), ≤2x< , ≤4x<3,5≤8x<6,f(x)=[2x]+[4x]+[8x]=1+2+5=8;
當(dāng) ≤x< 時(shí), ≤2x< ,3≤4x< ,6≤8x<7,f(x)=[2x]+[4x]+[8x]=1+3+6=10;
當(dāng) ≤x<1時(shí), ≤2x<2, ≤4x<4,7≤8x<8,f(x)=[2x]+[4x]+[8x]=1+3+7=11;
∴A={0,1,3,4,7,8,10,11}.
∴A中所有元素之和為0+1+3+4+7+8+10+11=44.
所以答案是:44.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最值及其幾何意義,需要了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍艿贸稣_答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬(wàn)元,此外每生產(chǎn)100件這樣的產(chǎn)品,還需增加投入0.25萬(wàn)元,經(jīng)市場(chǎng)調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷(xiāo)售數(shù)量為件時(shí),銷(xiāo)售所得的收入為萬(wàn)元.

(1)該公司這種產(chǎn)品的年生產(chǎn)量為件,生產(chǎn)并銷(xiāo)售這種產(chǎn)品所得到的利潤(rùn)關(guān)于當(dāng)年產(chǎn)量的函數(shù)為,求

(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實(shí)根,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,,且當(dāng)時(shí),的等差中項(xiàng).數(shù)列為等比數(shù)列,且,.

(Ⅰ)求數(shù)列、的通項(xiàng)公式;

(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/攝氏度

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的

附:回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I) 討論函數(shù)的單調(diào)區(qū)間;

(II)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為3,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的偶函數(shù)y=f(x),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求當(dāng)x<0時(shí),函數(shù)y=f(x)的解析式,并在給定坐標(biāo)系下,畫(huà)出函數(shù)y=f(x)的圖象;
(2)寫(xiě)出函數(shù)y=|f(x)|的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知2x≤256,且log2x≥
(1)求x的取值范圍;
(2)求函數(shù)f(x)=log2 )log2 )的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)f(log2x)的定義域是(2,4),則函數(shù) 的定義域是(
A.(2,4)
B.(2,8)
C.(8,32)
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案