11.已知函數(shù)f(x)=x+$\frac{m}{x}$,且此函數(shù)圖象過點(diǎn)(1,5),
(1)求實(shí)數(shù)m的值,并判斷函數(shù)f(x)的奇偶性;
(2)用單調(diào)性的定義證明函數(shù)f(x)在[1,2]上的單調(diào)性.

分析 (1)將點(diǎn)(1,5)帶入f(x)便可得到m=4,從而得到f(x)=$x+\frac{4}{x}$,容易得出f(x)為奇函數(shù);
(2)根據(jù)單調(diào)性的定義,設(shè)任意的x1,x2∈[1,2],且x1<x2,然后作差,通分,提取公因式x1-x2,從而判斷f(x1),f(x2)的關(guān)系,這便可得出f(x)在[1,2]上的單調(diào)性.

解答 解:(1)f(x)的圖象過點(diǎn)(1,5);
∴5=1+m;
∴m=4;
∴$f(x)=x+\frac{4}{x}$;
f(x)的定義域?yàn)閧x|x≠0},f(-x)=-x$-\frac{4}{x}=-f(x)$;
∴f(x)為奇函數(shù);
(2)設(shè)x1,x2∈[1,2],且x1<x2,則:
$f({x}_{1})-f({x}_{2})={x}_{1}+\frac{4}{{x}_{1}}-{x}_{2}-\frac{4}{{x}_{2}}$=$({x}_{1}-{x}_{2})(1-\frac{4}{{x}_{1}{x}_{2}})$;
∵1≤x1<x2≤2;
∴x1-x2<0,1<x1x2<4,$1-\frac{4}{{x}_{1}{x}_{2}}<0$;
∴$({x}_{1}-{x}_{2})(1-\frac{4}{{x}_{1}{x}_{2}})>0$;
∴f(x1)>f(x2);
∴f(x)在[1,2]上單調(diào)遞減.

點(diǎn)評(píng) 考查函數(shù)圖象上點(diǎn)的坐標(biāo)和函數(shù)解析式的關(guān)系,奇函數(shù)的定義,函數(shù)單調(diào)性的定義,根據(jù)單調(diào)性定義判斷函數(shù)單調(diào)性的方法和過程,作差的方法比較f(x1),f(x2),作差后是分式的一般要通分,一般要提取公因式x1-x2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)全集U={1,2,3,4,5},集合M={1,3,4},則集合∁UM={2,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=3x|${log_{\frac{1}{3}}}$x|-1的零點(diǎn)個(gè)數(shù)為2•

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx+c.
(Ⅰ)若f(1)=0,a>b>c.
①求證:f(x)的圖象與x軸有兩個(gè)交點(diǎn);
②設(shè)函數(shù)圖象與x軸的兩個(gè)交點(diǎn)分別為A、B,求線段AB的取值范圍.
(Ⅱ)若存在x1、x2且x1<x2,f(x1)≠f(x2),試說明方程f(x)=$\frac{f({x}_{1})+f({x}_{2})}{2}$,必有一根在區(qū)間(x1,x2)內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=ax-1+2的圖象恒過一定點(diǎn),則這個(gè)定點(diǎn)坐標(biāo)是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列四個(gè)命題,其中正確命題的個(gè)數(shù)( 。
①若a>|b|,則a2>b2
②若a>b,c>d,則a-c>b-d 
③若a>b,c>d,則ac>bd 
④若a>b>o,則$\frac{c}{a}$>$\frac{c}$.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是(  )
A.y=log2(x+5)B.$y={({\frac{1}{3}})^x}$C.y=-$\sqrt{x+2}$D.y=$\frac{1}{x}$-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓x2+y2-x+y-1=0的圓心坐標(biāo)是($\frac{1}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知p:x2-2(a-1)x+a(a一2)≥0,q:2x2-3x一2≥0,若p是q的必要不充分條件.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案