13.一個單位共有職工300人,其中男職工180人,女職工120人.用分層抽樣的方法從全體職工中抽取一個容量為50的樣本,應抽取女職工20人.

分析 根據(jù)分層抽樣的定義,根據(jù)條件建立比例關(guān)系即可得到結(jié)論.

解答 解:一個單位共有職工300人,其中男職工180人,女職工120人,
$\frac{120}{300}$×50=20人,
故答案為:20.

點評 本題主要考查分層抽樣的應用,根據(jù)條件建立比例關(guān)系是解決此類問題的基本方法,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知曲線y=$\frac{1}{{x}^{3}}$在點P(-1,-1)處的切線與直線m平行且距離等于$\sqrt{10}$,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知tanα=$\frac{1}{3}$,則sin2α+cos2α=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.圓C過點M(-2,0)及原點,且圓心C在直線x+y=0上.
(1)求圓C的方程;
(2)定點A(1,3),由圓C外一點P(a,b)向圓C引切線PQ,切點為Q,且滿足|PQ|=|PA|.
①求|PQ|的最小值及此刻點P的坐標;
②求||PC|-|PA||的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)F1、F2分別是橢圓的左、右焦點,若在直線x=$\frac{{a}^{2}}{c}$上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{3},1$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線平行于直線l:4x-3y+20=0,且雙曲線的一個焦點在直線l上,則雙曲線的方程為( 。
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{5{x}^{2}}{9}$-$\frac{5{y}^{2}}{16}$=1D.$\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知$α∈[{π,\frac{3π}{2}}]$,$sinα=-\frac{3}{5}$,則tanα=( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=x-\frac{1}{x}$.
(Ⅰ)證明:f(x)是奇函數(shù);
(Ⅱ)用函數(shù)單調(diào)性的定義證明:f(x)在(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=|log0.5x|,若正實數(shù)m,n(m<n)滿足f(m)=f(n),且f(x)在區(qū)間[m2,n]上的最大值為4,則n-m=(  )
A.$\frac{3}{2}$B.$\frac{15}{4}$C.$\frac{63}{4}$D.$\frac{255}{16}$

查看答案和解析>>

同步練習冊答案