分析 由已知利用同角三角函數(shù)基本關系式可求sinα,sinβ的值,進而利用兩角和的余弦函數(shù)公式即可計算得解cos(α+β)的值.
解答 解:∵cosα=$\frac{3}{5}$,cosβ=$\frac{4}{5}$,并且α和β都是銳角,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{3}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{3}{5}×\frac{4}{5}$-$\frac{4}{5}×\frac{3}{5}$=0.
點評 本題主要考查了同角三角函數(shù)基本關系式,兩角和的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ±$\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{\sqrt{5}}}{3}$ | C. | -$\frac{{\sqrt{5}}}{3}$ | D. | ±$\frac{{\sqrt{5}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
價 格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
n-2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
小概率0.01 | 1.000 | 0.990 | 0.959 | 0.917 | 0.874 | 0.834 | 0.798 | 0.765 | 0.735 | 0.708 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com