13.設cosα=$\frac{3}{5}$,cosβ=$\frac{4}{5}$,并且α和β都是銳角,求cos(α+β)的值.

分析 由已知利用同角三角函數(shù)基本關系式可求sinα,sinβ的值,進而利用兩角和的余弦函數(shù)公式即可計算得解cos(α+β)的值.

解答 解:∵cosα=$\frac{3}{5}$,cosβ=$\frac{4}{5}$,并且α和β都是銳角,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$,sinβ=$\sqrt{1-co{s}^{2}β}$=$\frac{3}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{3}{5}×\frac{4}{5}$-$\frac{4}{5}×\frac{3}{5}$=0.

點評 本題主要考查了同角三角函數(shù)基本關系式,兩角和的余弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.在某科普雜志的一篇文章中,每個句子的字數(shù)如下:
10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17
在某報紙的一篇文章中,每個句子的字數(shù)如下:
27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)不計算僅從莖葉圖中兩組數(shù)據(jù)的分布情況對數(shù)據(jù)進行比較,得到什么結論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,若曲線y=f(x)在點(1,f(1))處的切線垂直于直線x-3y=0,則切線方程為3x+y-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知直線L的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=4-2t}\end{array}\right.$(參數(shù)t∈R),圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ+2}\\{y=2sinθ}\end{array}\right.$(參數(shù)θ∈[0,2π]),
(1)將直線L的參數(shù)方程與圓C的參數(shù)方程分別化成普通方程.
(2)求直線L被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖為指數(shù)函數(shù)y=ax,y=bx,y=cx的圖象,則a,b,c,的大小關系是(  )
A.a>b>cB.b>c>aC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.等差數(shù)列{an}中,a1=33,d=-4,若前n項和Sn得最大值,則n=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知α∈(0,π),sinα+cosα=$\frac{{\sqrt{3}}}{3}$,則cos2α=( 。
A.±$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{5}}}{3}$C.-$\frac{{\sqrt{5}}}{3}$D.±$\frac{{\sqrt{5}}}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在一段時間內(nèi),某種商品價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:
價 格x1.41.61.822.2
需求量y1210753
(1)進行相關性檢驗;
(2)如果x與y之間具有線性相關關系,求出回歸直線方程,并預測當價格定為1.9萬元,需求量大約是多少?(精確到0.01t)
參考公式及數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}_{i}^{2}-n{\overline{y}}^{2})}}$,$\sqrt{21.28}$≈4.61,$\sum_{i=1}^5{{x_i}{y_i}}$=62   $\sum_{i=1}^5{{x_i}^2}$=16.6  $\sum_{i=1}^5{{y_i}^2}$=327
相關性檢驗的臨界值表:
n-212345678910
小概率0.011.0000.9900.9590.9170.8740.8340.7980.7650.7350.708

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知命題p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分條件,則實數(shù)m的取值范圍為[9,+∞).

查看答案和解析>>

同步練習冊答案