分析 將圓的方程化為標準方程,找出圓心A的坐標,由垂徑定理得到與直徑AM垂直的弦最短,根據(jù)A和M的坐標求出直線AM的斜率,利用兩直線垂直時斜率的乘積為-1,求出直線l的斜率,由求出的斜率及M的坐標,即可得到直線l的方程.
解答 解:將圓的方程化為標準方程得:(x-1)2+(y+2)2=9,
∴圓心A坐標為(1,-2),又M(3,0),
∵直線AM的斜率為$\frac{0-(-2)}{3-1}$=1,
∴直線l的斜率為-1,
則直線l的方程為y=-(x-3),即x+y-3=0.
故答案為:x+y-3=0.
點評 此題考查了直線與圓相交的性質,涉及的知識有:圓的標準方程,兩直線垂直時斜率滿足的關系,以及直線的點斜式方程,根據(jù)垂徑定理得到與直徑AM垂直的弦最短是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若d1-d2=0,則直線P1P2與直線l平行 | |
B. | 若d1+d2=0,則直線P1P2與直線l平行 | |
C. | 若d1+d2=0,則直線P1P2與直線l垂直 | |
D. | 若d1•d2<0,則直線P1P2與直線l相交 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“p或q”為真命題,則命題“p”和命題“q”均為真命題 | |
B. | “am2<bm2”是”a<b”的必要不充分條件 | |
C. | 命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∉R,都有x2+x+1≥0 | |
D. | 命題“若x2<1,則-1<x<1”的逆否命題是若x≥1或x≤-1,則x2≥1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com