1.已知f(x)=3${\;}^{{x}^{2}+2x+1}$,g(x)=3${\;}^{2{x}^{2}-4x+5}$,求當(dāng)f(x)<g(x)時x的取值范圍.

分析 由指數(shù)函數(shù)的單調(diào)性利用f(x)<g(x),得x2+2x+1<2x2-4x+5,由此能求出當(dāng)f(x)<g(x)時x的取值范圍.

解答 解:∵f(x)=3${\;}^{{x}^{2}+2x+1}$,g(x)=3${\;}^{2{x}^{2}-4x+5}$,f(x)<g(x),
∴x2+2x+1<2x2-4x+5,
整理,得:x2-6x+4>0,
解得x>3+$\sqrt{5}$或x<3-$\sqrt{5}$.
∴當(dāng)f(x)<g(x)時x的取值范圍是(-∞,3-$\sqrt{5}$)∪(3+$\sqrt{5}$,+∞).

點評 本題考查不等式的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1內(nèi)有一點P(3,1),F(xiàn)為雙曲線的右焦點,在雙曲線上有一點M,使|MP|+$\frac{2}{3}$|MF|的值最小,則這個最小值為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.甲、乙兩名同學(xué)在5次英語口語測試中的成績統(tǒng)計如圖的莖葉圖所示.
(1)分別在甲乙的5次成績中任取一次,至少有一個成績高于80的概率;
(2)若將頻率視為概率,對學(xué)生甲和乙在今后的兩次英語口語競賽成績進行預(yù)測,記兩人成績都高于85分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求值:(1)$\root{6}{24}$×$\root{3}{3}$×$\sqrt{\frac{3}{2}}$;
(2)已知lg2=a,lg3=b,求lg$\frac{9}{5}$.(用a,b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解一元一次方程:$\frac{3}{4}$[3(x-$\frac{1}{9}$)+$\frac{2}{3}$]=3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若a,b為實數(shù),且(5a+6)2+(b-3)2=0,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)log83=a,log35=b.試用a、b表示lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知2x=log23,則22x+1+2-2x=$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合$A=\{x|\frac{2x-3a-1}{x-2a-2}<1,a>-3\}$,集合B={x|2cos2x+1≥0}
(Ⅰ)當(dāng)a=-2時,求A∩B;
(Ⅱ)若$A∩B=[-\frac{π}{3},\frac{π}{3}]$,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案