A. | (0,$\frac{1}{2}$) | B. | (1,+∞) | C. | (0,$\frac{1}{2}$)∪(1,+∞) | D. | (0,1)∪(1,+∞) |
分析 先求出數(shù)列{an}以及數(shù)列{bn}的通項,利用條件得到關于n和a的不等式,分0<a<1和a>1兩種情況分別解不等式即可.
解答 解:由題得:an=a•an-1=an,bn=nanlga=nanlga.
由bn<bn+1⇒nlga•an<(n+1)lga•an+1⇒lga•an[n-(n+1)a]<0.
當0<a<1時,lga<0,an>0,⇒n-(n+1)a>0⇒a<$\frac{n}{n+1}$,故0<a<$\frac{n}{n+1}$;
當a>1時,lga>0,an>0,⇒n-(n+1)a<0⇒a>$\frac{n}{n+1}$,故a>1.
∴a的取值范圍是a>1或0<a<$\frac{n}{n+1}$,
∵n+1≤2n,∴$\frac{n}{n+1}$≥$\frac{1}{2}$,
∴a的取值范圍是a>1或0<a<$\frac{1}{2}$.
故選:C.
點評 本題考查等比數(shù)列的通項公式,考查了數(shù)列不等式的解法,體現(xiàn)了分類討論的數(shù)學思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y={x^{\frac{2016}{2015}}}$ | B. | $y={x^{\frac{2013}{2015}}}$ | C. | $y={x^{-\frac{2014}{2015}}}$ | D. | $y={x^{-\frac{2015}{2016}}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com