19.已知數(shù)列{an}中,an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,則a2016的值為$\frac{1}{2014}$.

分析 an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,變形為$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+$\frac{2013}{2015}$,利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵an+1=$\frac{{2015a}_{n}}{{2013a}_{n}+2015}$,n∈N*,a1=1,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+$\frac{2013}{2015}$,即$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{2013}{2015}$,
∴數(shù)列$\{\frac{1}{{a}_{n}}\}$是等差數(shù)列,首項(xiàng)為1,公差為$\frac{2013}{2015}$.
∴$\frac{1}{{a}_{n}}$=1+$\frac{2013}{2015}(n-1)$=$\frac{2013n+2}{2015}$,
∴an=$\frac{2015}{2013n+2}$.
則a2016=$\frac{2015}{2013×2016+2}$=$\frac{1}{2014}$.
故答案為:$\frac{1}{2014}$.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式及其性質(zhì)、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=4x3+bx2+ax+5在x=$\frac{3}{2}$,x=-1處有極值
(1)求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性并寫出單調(diào)區(qū)間;
(3)求函數(shù)在[-1,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示.則其體積積為(  )
A.B.$\frac{17}{2}π$C.D.$\frac{15}{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,網(wǎng)格紙上正方形小格的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.25B.27C.30D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=(log2a)x是減函數(shù),則a的取值范圍是a∈(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知x,y滿足不等式$\left\{\begin{array}{l}{x≥0}\\{x-y+2≤0}\\{2x+y-5≤0}\end{array}\right.$,則z=(x-1)2+y2的最小值為( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n(n+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=$\frac{_{1}}{3+1}+\frac{_{2}}{{3}^{2}+1}+\frac{_{3}}{{3}^{3}+1}$+…+$\frac{_{n}}{{3}^{n}+1}$,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知數(shù)列{an}是以a為首項(xiàng),a為公比的等比數(shù)列(a>0,a≠1),令bn=an1gan,若{bn}中的每一項(xiàng)總小于它后面的一項(xiàng),則a的取值范圍是( 。
A.(0,$\frac{1}{2}$)B.(1,+∞)C.(0,$\frac{1}{2}$)∪(1,+∞)D.(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若橢圓${x^2}+\frac{y^2}{2}=1$的兩個(gè)焦點(diǎn)是F1,F(xiàn)2,點(diǎn)P在橢圓上,且PF1⊥F1F2,那么|PF2|=( 。
A.2B.4C.$\frac{5}{2}\sqrt{2}$D.$\frac{3}{2}\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案