19.已知點A(1,1),B(2,3),C(0,2),D(5,5)則向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影為-$\frac{\sqrt{13}}{13}$.

分析 設(shè)向量$\overrightarrow{AC}$與$\overrightarrow{BD}$的夾角為θ,由條件求得cosθ=$\frac{\overrightarrow{AC}•\overrightarrow{BD}}{|\overrightarrow{AC}|•|\overrightarrow{BD}|}$ 的值,再根據(jù)向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影為|$\overrightarrow{AC}$|•cosθ,計算求得結(jié)果.

解答 解:由題意可得向量$\overrightarrow{AC}$=(-1,1),$\overrightarrow{BD}$=(3,2),∴|$\overrightarrow{AC}$|=$\sqrt{2}$,|$\overrightarrow{BD}$|=$\sqrt{9+4}$=$\sqrt{13}$.
設(shè)向量$\overrightarrow{AC}$與$\overrightarrow{BD}$的夾角為θ,則cosθ=$\frac{\overrightarrow{AC}•\overrightarrow{BD}}{|\overrightarrow{AC}|•|\overrightarrow{BD}|}$=$\frac{-3+2}{\sqrt{2}•\sqrt{13}}$=-$\frac{1}{\sqrt{26}}$.
故向量$\overrightarrow{AC}$在$\overrightarrow{BD}$方向上的投影為|$\overrightarrow{AC}$|•cosθ=-$\frac{\sqrt{2}}{\sqrt{26}}$=-$\frac{\sqrt{13}}{13}$,
故答案為:-$\frac{\sqrt{13}}{13}$.

點評 本題主要考查兩個向量的數(shù)量積的運算,求一個向量在另一個向量上的投影,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,若1+$\frac{tanA}{tanB}$=$\frac{2c}$.
(1)求角A的大小;
(2)若函數(shù)f(x)=2sin2(x+$\frac{π}{4}$)-$\sqrt{3}$cos2x,x∈[$\frac{π}{4}$,$\frac{π}{2}$],在x=B處取到最大值a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知y=f(x)是一次函數(shù),且f(2),f(5),f(4)成等比數(shù)列,f(8)=15,設(shè)an=f(n)(n∈N*).
(1)求{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn,并求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=log2|x|.
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)根據(jù)函數(shù)奇偶性判斷f(x)在(-∞,0)上的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知矩陣A=$[\begin{array}{l}{1}&{-2}\\{-2}&{-1}\end{array}]$,B=$[\begin{array}{l}{5}\\{-15}\end{array}]$滿足AX=B,求矩陣X.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中心在原點,焦點在x軸上的雙曲線C的離心率為$\sqrt{2}$,直線l與雙曲線C交于A,B兩點,線段AB中點M在第一象限,并且在拋物線y2=2px(p>0)上,且M到拋物線焦點的距離為p,則直線l的斜率為( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=$\frac{1}{2}$e2x-3x在x=$\frac{1}{2}$ln3處取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知λ,μ為常數(shù),且為正整數(shù),λ≠1,無窮數(shù)列{an}的各項均為正整數(shù),其前n項和為Sn,對任意的正整數(shù)n,Sn=λan-μ.記數(shù)列{an}中任意兩不同項的和構(gòu)成的集合為A.
(1)證明:無窮數(shù)列{an}為等比數(shù)列,并求λ的值;
(2)若2015∈A,求μ的值;
(3)對任意的n∈N*,記集合Bn={x|3μ•2n-1<x<3μ•2n,x∈A}中元素的個數(shù)為bn,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.假設(shè)你有一筆資金用于投資,現(xiàn)有三種投資方案供你選擇,這三種方案的回報如圖所示:橫軸為投資時間,縱軸為回報,根據(jù)以上信息,若使回報最多,下列說法錯誤的是( 。
A.投資3天以內(nèi)(含3天),采用方案一B.投資4天,不采用方案三
C.投資6天,采用方案二D.投資10天,采用方案二

查看答案和解析>>

同步練習(xí)冊答案