分析 (I)利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出;
(II)bn=b1+(n-1)d=3n-2,可得${c_n}={a_{b_n}}={a_{3n-2}}={3^{3n-2}}$,再利用等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(Ⅰ)當(dāng)n=1時(shí),${S_1}={a_1}=\frac{1}{2}{a_2}-\frac{3}{2}=3$,∴a2=9 (2分)
∵${S_n}=\frac{1}{2}•{a_{n+1}}-\frac{3}{2}$,
∴${S_{n-1}}=\frac{1}{2}•{a_n}-\frac{3}{2},\;(n≥2)$,
相減得:$\frac{{{a_{n+1}}}}{a_n}=3\;(n≥2)$,
∴an=${a}_{2}•{3}^{n-2}$=3n,(5分)
當(dāng)n=1時(shí),符合${a_n}={3^n}$,(6分)
∴${a_n}={3^n}$. (7分)
(Ⅱ)bn=b1+(n-1)d=3n-2,(9分)
${c_n}={a_{b_n}}={a_{3n-2}}={3^{3n-2}}$ (12分)
∴{cn}是以3為首項(xiàng),以27為公比的等比數(shù)列,
∴${T_n}=\frac{{3(1-{{27}^n})}}{1-27}=\frac{3}{26}({27^n}-1)$ (15分)
點(diǎn)評 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3條 | B. | 2條 | C. | 1條 | D. | 0條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | $\frac{π}{2}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 0 | C. | -2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | [2,2$\sqrt{2}$] | C. | [1,2$\sqrt{2}$] | D. | [$\sqrt{3}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com