3.函數(shù)y=sinx的最小正周期是(  )
A.πB.C.$\frac{π}{2}$D.$\frac{π}{4}$

分析 根據(jù)三角函數(shù)的周期性及其求法運(yùn)算可得結(jié)果.

解答 解:函數(shù)y=sinx的最小正周期是:$\frac{2π}{1}$=2π,
故選:B.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性及求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.2015年春晚過(guò)后,為了研究演員上春晚次數(shù)與受關(guān)注的關(guān)系,某網(wǎng)站對(duì)其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)12468
粉絲數(shù)量y(單位:萬(wàn)人)510204080
(1)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$(精確到整數(shù)); 
(2)試根據(jù)此方程預(yù)測(cè)該演員上春晚10次時(shí)的粉絲數(shù);   
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖,在棱長(zhǎng)為2 的正方體ABCD-A1B1C1D1中,M是A1B1的中點(diǎn),點(diǎn)P是側(cè)面CDD1C1上的動(dòng)點(diǎn),且MP∥截面AB1C,則線段MP長(zhǎng)度的取值范圍是( 。
A.$[{\sqrt{2},\sqrt{6}}]$B.$[{\sqrt{6},2\sqrt{2}}]$C.$[{\sqrt{6,}2\sqrt{3}}]$D.$[{\sqrt{6,}3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知$tan(\frac{α}{2}+β)=\frac{1}{2},tan(β-\frac{α}{2})=\frac{1}{3}$,則tanα=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知點(diǎn)A(0,-6),B(1,-5),且D為線段AB的中點(diǎn).
(Ⅰ)求中點(diǎn)D的坐標(biāo);
(Ⅱ)求線段AB的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=\;1$(a>0,b>0)的右焦點(diǎn)為F,過(guò)F且斜率為$\sqrt{3}$的直線交C于A,B兩點(diǎn),若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,則C的離心率為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.①命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.
②“x=1”是“x2-4x+3=0”的充要條件;
③若p∧q為假命題,則p、q均為假命題.
④對(duì)于命題p:?x0∈R,x02+2x0+2≤0,則¬p:?x∈R,x2+2x+2>0
上面四個(gè)命題中正確是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}中a1=3,其前n項(xiàng)和Sn滿足Sn=$\frac{1}{2}$an+1-$\frac{3}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè){bn}是公差為3的等差數(shù)列,b1=1.現(xiàn)將數(shù)列{an}中的a${\;}_{_{1}}$,a${\;}_{_{2}}$,…a${\;}_{_{n}}$…抽出,按原有順序組成一新數(shù)列{cn},試求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.△ABC中,c=6$\sqrt{3}$,a=6,A=30°.則△ABC的形狀是(  )
A.銳角三角形B.直角三角形
C.鈍角三角形或銳角三角形D.鈍角三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案