12.已知m,n∈N*,a>0,a≠1,且logam+loga(1+$\frac{1}{m}$)+loga(1+$\frac{1}{m+1}$)+…+loga(1+$\frac{1}{m+n-1}$)=logam+logan,求m,n的值.

分析 利用對(duì)數(shù)運(yùn)算法則把已知等式化為loga(m+n)=logam+logan=logamn,由此能求出m,n的值.

解答 解:∵m,n∈N*,a>0,a≠1,且logam+loga(1+$\frac{1}{m}$)+loga(1+$\frac{1}{m+1}$)+…+loga(1+$\frac{1}{m+n-1}$)=logam+logan,
∴l(xiāng)ogam+loga(1+$\frac{1}{m}$)+loga(1+$\frac{1}{m+1}$)+…+loga(1+$\frac{1}{m+n-1}$)
=$lo{g}_{a}m+lo{g}_{a}(\frac{m+1}{m})+lo{g}_{a}(\frac{m+2}{m+1})$+…+$lo{g}_{a}(\frac{m+n}{m+n-1})$
=$lo{g}_{a}(m×\frac{m+1}{m}×\frac{m+2}{m+1}×…×\frac{m+n}{m+n-1})$
=loga(m+n),
∴已知等式可以化為loga(m+n)=logam+logan=logamn,
比較真數(shù),得m+n=mn,即(m-1)(n-1)=1,
∵m,n為正整數(shù),∴$\left\{\begin{array}{l}{m-1=1}\\{n-1=1}\end{array}\right.$,解得m=2,n=2.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.復(fù)數(shù)$\frac{2-i}{i}$(i為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)是( 。
A.(2,-1)B.(-2,-1)C.(-1,-2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.直線$\sqrt{3}$x+y-3=0的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知m,n∈R且a>1,直線l:(m+3n)x+2(m-n)y-8m=0與函數(shù)y=loga(x+b)的圖象恒有公共點(diǎn),則a3-b2的最大值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=tanx,x∈[-$\frac{π}{4}$,$\frac{π}{6}$]的值域?yàn)閇-1,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.式子$\frac{tan24°+tan36°+tan120°}{tan24°tan36°}$的值是$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知角α的終邊經(jīng)過(guò)點(diǎn)(-4,3),則sin(π+α)=-$\frac{3}{5}$,cos(π-α)=$\frac{4}{5}$,tan(-α)=$\frac{3}{4}$,sin($\frac{π}{2}$-α)=-$\frac{4}{5}$,cos($\frac{π}{2}$+α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.要得到函數(shù)y=sin(-$\frac{1}{2}$x)的圖象,只需將函數(shù)y=sin(-$\frac{1}{2}$x+$\frac{π}{6}$)的圖象( 。
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x${\;}^{-{m}^{2}-2m+3}$(m∈Z)為偶數(shù),且在(0,+∞)上是增函數(shù),則f(2)=( 。
A.2B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案