15.若$\overrightarrow a,\overrightarrow b,\overrightarrow c$均為單位向量,$\overrightarrow a•\overrightarrow b=-\frac{1}{2},\overrightarrow c=x\overrightarrow a+y\overrightarrow b,({x,y∈R})$,則x+y的最大值是2.

分析 由題意可知${\overrightarrow{c}}^{2}$=(x$\overrightarrow{a}$+y$\overrightarrow$)2=x2+y2+2$\overrightarrow{a}•\overrightarrow$xy=x2+y2-xy=1,設(shè)x+y=t,y=t-x,得3x2-3tx+t2-1=0,由方程3x2-3tx+t2-1=0有解,知△=9t2-12(t2-1)≥0,由此能求出x+y的最大值

解答 解:$\overrightarrow a,\overrightarrow b,\overrightarrow c$均為單位向量,$\overrightarrow a•\overrightarrow b=-\frac{1}{2},\overrightarrow c=x\overrightarrow a+y\overrightarrow b,({x,y∈R})$,
∴${\overrightarrow{c}}^{2}$=(x$\overrightarrow{a}$+y$\overrightarrow$)2=x2+y2+2$\overrightarrow{a}•\overrightarrow$xy=x2+y2-xy=1,
設(shè)x+y=t,y=t-x,得:x2+(t-x)2-x(t-x)-1=0,
∴3x2-3tx+t2-1=0,
∵方程3x2-3tx+t2-1=0有解,
∴△=9t2-12(t2-1)≥0,
-3t2+12≥0,
∴-2≤t≤2
∴x+y的最大值為2.
故答案為:2.

點(diǎn)評(píng) 本題考查平面向量的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意平面向量的數(shù)量積和換元法的靈活運(yùn)用.本題也可用基本不等式解答

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{4}$,β∈($\frac{π}{2}$,π),求sin(β+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=sin(2x-$\frac{π}{3}$).
(1)求f(x)的單調(diào)增區(qū)間;
(2)求f(x)取最大值時(shí)x值的集合;
(3)函數(shù)y=f(x)-m在[0,$\frac{π}{2}$]上有零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=x2+x在x=1到x=1+△x之間的平均變化率為(  )
A.△x+2B.2△x+(△x)2C.△x+3D.3△x+(△x)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.計(jì)算log62+log63=( 。
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若m是函數(shù)f(x)=$\sqrt{x}$-2x+2的一個(gè)零點(diǎn),且x1∈(0,m),x2∈(m,+∞),則f(x1),f(x2),f(m)的大小關(guān)系為(  )
A.f(x1)<f(m)<f(x2B.f(m)<f(x2)<f(x1C.f(m)<f(x1)<f(x2D.f(x2)<f(m)<f(x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.五名學(xué)生站成一排,則甲乙相鄰的概率為( 。
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,根據(jù)已知數(shù)據(jù)求得甲、乙機(jī)床的次品數(shù)的平均值分別為${\overline x_甲}=1.5,{\overline x_乙}$=1.2,方差分別為s2=1.65,s2=0.76,則性能比較好的機(jī)床是乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=log2(|x-1|+|x-4|-a),a∈R.
(1)當(dāng)a=-2時(shí),求f(x)≥3的解集;
(2)當(dāng)函數(shù)f(x)的定義域?yàn)镽時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案