10.關(guān)于定義在R上的函數(shù)f(x),給出下列三個命題
①若f(1)=f(-1),則f(x)不是奇函數(shù);
②若f(1)>f(-1),則f(x)在R上不是單調(diào)減函數(shù);
③若f(1+x)=f(x-1)對任意的x∈R恒成立,則f(x)是周期函數(shù).
其中所有正確的命題序號是②③.

分析 結(jié)合函數(shù)的奇偶性,函數(shù)的單調(diào)性,函數(shù)的周期性的定義,逐一分析三個結(jié)論的真假,可得答案.

解答 解:定義在R上的函數(shù)f(x),
①若f(1)=f(-1)=0,則f(x)可能是奇函數(shù),故錯誤;
②若f(1)>f(-1),則f(x)在R上不是單調(diào)減函數(shù),故正確;
③若f(1+x)=f(x-1)對任意的x∈R恒成立,則f(x+2)=f(x),則f(x)是周期函數(shù),故正確.
故正確的命題為:②③,
故答案為:②③

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的奇偶性,函數(shù)的單調(diào)性,函數(shù)的周期性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面向量$\overrightarrow a,\overrightarrow b$為單位向量,$|\overrightarrow a+\overrightarrow b|=1$,則向量$\overrightarrow a,\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{0B}$=$\overrightarrow$,已知$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$-$\overrightarrow$|=2,當(dāng)△AOB的面積最大時,求∠AOB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.現(xiàn)有5個紅色氣球和4個黃色氣球,紅色氣球內(nèi)分別裝有編號為1、3、5、7、9的號簽,黃色氣球內(nèi)分別裝有編號為2、4、6、8的號簽,參加游戲者,先對紅色氣球隨機(jī)射擊一次,記所得編號為a,然后對黃色氣球隨機(jī)射擊一次,若所得編號為2a,則游戲結(jié)束;否則再對黃色氣球隨機(jī)射擊一次,將從黃色氣球中所得編號相加,若和為2a,則游戲結(jié)束;否則繼續(xù)對剩余的黃色氣球進(jìn)行射擊,直到和為2a為止,或者到黃色氣球打完為止,游戲結(jié)束.
(1)求某人只射擊兩次的概率;
(2)若某人射擊氣球的次數(shù)ξ與所得獎金的關(guān)系為η=10(5-ξ),求他所得獎金η的布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖程序中,若輸入x=-2,則輸出y的值為( 。
A.1B.13C.-2D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在正方體ABCD-A1B1C1D1中,P是A1B1的中點(diǎn),Q是AB的中點(diǎn),求異面直線A1Q與DP所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.將下列各題迸行直角坐標(biāo)方程與極坐標(biāo)方程的互化
(1)y2+x2-2x-1=0;
(2)ρ=$\frac{1}{2-cosθ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin(ωx+φ-$\frac{π}{6}$)(0<φ<π,ω>0))為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為$\frac{π}{2}$.(I)求f($\frac{π}{8}$)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍(縱坐標(biāo)不變),再將圖象向右平移$\frac{π}{6}$個單位后,得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g2(x+$\frac{π}{6}$)+2mcosx+4=0在x∈(0,$\frac{π}{2}$)有實(shí)數(shù)解,求實(shí)數(shù)m的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求函數(shù)y=xx的導(dǎo)數(shù).

查看答案和解析>>

同步練習(xí)冊答案