10.函數(shù)$f(x)={log_{\frac{1}{2}}}cos(2x-\frac{2}{3}π)$的單調(diào)增區(qū)間為( 。
A.$({kπ+\frac{π}{3},kπ+\frac{7π}{12}})(k∈Z)$B.$({kπ-\frac{π}{6},kπ+\frac{π}{3}})(k∈Z)$
C.$({kπ+\frac{π}{12},kπ+\frac{π}{3}})(k∈Z)$D.$({kπ+\frac{π}{3},kπ+\frac{5π}{6}})(k∈Z)$

分析 根據(jù)真數(shù)大于0,求出函數(shù)的定義域,結(jié)合復(fù)合函數(shù)的單調(diào)性“同增異減”的原則,可得函數(shù)的單調(diào)增區(qū)間.

解答 解:由$cos(2x-\frac{2}{3}π)$>0得,$2x-\frac{2}{3}π$∈$(2kπ-\frac{π}{2},2kπ+\frac{π}{2})(k∈Z)$,
解得:x∈$(kπ+\frac{π}{12},kπ+\frac{7π}{12})(k∈Z)$,
故函數(shù)$f(x)={log_{\frac{1}{2}}}cos(2x-\frac{2}{3}π)$的定義域?yàn)?(kπ+\frac{π}{12},kπ+\frac{7π}{12})(k∈Z)$,
又由y=$lo{g}_{\frac{1}{2}}t$為減函數(shù),
t=$cos(2x-\frac{2}{3}π)$在$(kπ+\frac{π}{3},kπ+\frac{7π}{12})(k∈Z)$為減函數(shù),
故函數(shù)$f(x)={log_{\frac{1}{2}}}cos(2x-\frac{2}{3}π)$的單調(diào)增區(qū)間為$(kπ+\frac{π}{3},kπ+\frac{7π}{12})(k∈Z)$,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象與性質(zhì),復(fù)合函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)$M(1,\frac{{\sqrt{2}}}{2})$,且其離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)若F為橢圓C的右焦點(diǎn),橢圓C與y軸的正半軸相交于點(diǎn)B,經(jīng)過(guò)點(diǎn)B的直線與橢圓C相交于另一點(diǎn)A,且滿足$\overrightarrow{BA}•\overrightarrow{BF}$=2,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某公司每生產(chǎn)一批產(chǎn)品都能維持一段時(shí)間的市場(chǎng)供應(yīng),若公司本次新產(chǎn)品生產(chǎn)x月后,公司的存貨量大致滿足模型f(x)=-3x3+12x+8,那么下次生產(chǎn)應(yīng)在多長(zhǎng)時(shí)間后開(kāi)始?( 。
A.1個(gè)月后B.2個(gè)月后C.3個(gè)月后D.4個(gè)月后

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∉R.
(1)求函數(shù)f(x)的最小正周期,最大值,最小值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)已知函數(shù)f(x)=|x-a|-$\frac{4}{x}$+a,a∈R,
(Ⅰ)當(dāng)x∈[1,4]時(shí),求函數(shù)f(x)的最大值的表達(dá)式M(a)
(Ⅱ)是否存在實(shí)數(shù)a,使得f(x)=3有且僅有3個(gè)不等實(shí)根,且它們成等差數(shù)列,若存在,求出所有a的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求下列函數(shù)定義域:
(1)y=logx-1(3-x)
(2)$y=\sqrt{2sinx+1}+{log_2}(2cosx-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}中,a1=2,對(duì)于任意的p,q∈N,有ap+q=ap+aq
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:an=$\frac{_{1}}{2+1}$-$\frac{_{2}}{{2}^{2}+1}$+$\frac{_{3}}{{2}^{3}+1}$-$\frac{_{4}}{{2}^{4}+1}$+…+(-1)n-1$\frac{_{n}}{{2}^{n}+1}$(n∈N),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某單位有職工750人,其中青年職工420人,中年職工210人,老年職工120人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本,若樣本中的青年職工為14人,則樣本容量為( 。
A.7B.15C.25D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)$(2,2\sqrt{2})$,則f(9)=27.

查看答案和解析>>

同步練習(xí)冊(cè)答案