分析 (1)由EF∥A1B,AD1∥BC1,得∠A1BC1是EF和AD1所成角,由此利用余弦定理能求出EF和AD1所成角的正弦值.
(2)延長D1A1到F使A1F=D1A1,則AF∥DA1∥CB1,從而AC1和B1C所成角為AF與AC1的夾角,由此利用余弦定理能求出AC1與B1C所成角的余弦值.
解答 解:(1)如圖1,∵EF∥A1B,AD1∥BC1,
∴∠A1BC1是EF和AD1所成角,
∵長方體ABCD-A1B1C1D1中,AB=BC=2a,AA1=a,E和F分別是A1B1和BB1的中點(diǎn),
∴AD1=$\sqrt{{a}^{2}+4{a}^{2}}$=$\sqrt{5}$a=BC1,A1B=$\sqrt{{a}^{2}+4{a}^{2}}$=$\sqrt{5}$a,
A1C1=$\sqrt{4{a}^{2}+4{a}^{2}}$=2$\sqrt{2}$a,
∴cos∠A1BC1=$\frac{5{a}^{2}+5{a}^{2}-8{a}^{2}}{2×5{a}^{2}}$=$\frac{1}{5}$,
∴sin∠A1BC1=$\sqrt{1-(\frac{1}{5})^{2}}$=$\frac{2\sqrt{6}}{5}$.
(2)如圖2,延長D1A1到F使A1F=D1A1,則AF∥DA1∥CB1,
∴AC1和B1C所成角為AF與AC1的夾角,即∠FAC1(或其補(bǔ)角),
∵AF=B1C=$\sqrt{5}$a,AC1=$\sqrt{{a}^{2}+4{a}^{2}+4{a}^{2}}$=3a,
FC1=$\sqrt{(2a)^{2}+(4a)^{2}}$=2$\sqrt{5}$a,
∴cos∠FAC1=$\frac{5{a}^{2}+9{a}^{2}-20{a}^{2}}{2×\sqrt{5}a×3a}$=$\frac{-6}{6\sqrt{5}}$=-$\frac{\sqrt{5}}{5}$,
∴AC1與B1C所成角的余弦值為$\frac{\sqrt{5}}{5}$.
點(diǎn)評 本題考查異面直線所成角的正弦值和余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | -$\frac{5}{6}$ | C. | $\frac{6}{5}$ | D. | -$\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{5}$+$\frac{3}{5}$i | B. | $\frac{1}{5}$+$\frac{3}{5}$i | C. | $\frac{1}{5}$-$\frac{3}{5}$i | D. | -$\frac{1}{5}$-$\frac{3}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a+b>0 | B. | a+b<0 | C. | a+b=0 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com