7.冪函數(shù)f(x)=k•xα的圖象過(guò)點(diǎn)$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,則k+α=(  )
A.$\frac{1}{3}$B.1C.$\frac{3}{2}$D.2

分析 冪函數(shù)f(x)=k•xα的圖象過(guò)點(diǎn)$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,可得$\frac{\sqrt{3}}{3}=k(\frac{1}{3})^{α}$,k=1,解出即可.

解答 解:冪函數(shù)f(x)=k•xα的圖象過(guò)點(diǎn)$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,
∴$\frac{\sqrt{3}}{3}=k(\frac{1}{3})^{α}$,k=1,
解得α=$\frac{1}{2}$.
∴k+α=$\frac{3}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)運(yùn)算性質(zhì)、冪函數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某移動(dòng)公司對(duì)[25,55]歲的人群隨機(jī)抽取n人進(jìn)行了一次是否愿意使用4G網(wǎng)絡(luò)的社會(huì)調(diào)查,若愿意使用的稱為“4G族”,否則稱為“非4G族”,得如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

(1)補(bǔ)全頻率分布直方圖并求n、a的值;
(2)用頻率分布直方圖估計(jì)“4G族”年齡的中位數(shù),和平均數(shù)(不用寫過(guò)程只寫數(shù)據(jù));
(3)從年齡段在[40,50)的“4G族”中采用分層抽樣法抽取6人參加4G網(wǎng)絡(luò)體驗(yàn)活動(dòng),求年齡段分別在[40,45)、[45,50)中抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在平面幾何里,“若CD是Rt△ABC的斜邊AB上的高,則$\frac{1}{{C{D^2}}}=\frac{1}{{C{A^2}}}+\frac{1}{{C{B^2}}}$.”拓展到空間,研究三棱錐的高與側(cè)棱間的關(guān)系,可得出的正確結(jié)論是:“若三棱錐A-BCD的三側(cè)面ABC、ACD、ADB兩兩互相垂直,AO是三棱錐A-BCD的高,則$\frac{1}{{A{O^2}}}=\frac{1}{{A{B^2}}}+\frac{1}{{A{C^2}}}+\frac{1}{{A{D^2}}}$”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的離心率為$\frac{1}{2}$,則雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的漸近線方程為(  )
A.$y=±\frac{{\sqrt{3}}}{2}x$B.$y=±\frac{{2\sqrt{3}}}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(x,-2),且$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則實(shí)數(shù)x的值等于( 。
A.-4B.4C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知雙曲線的漸近線方程為y=±$\frac{1}{2}$x,且經(jīng)過(guò)點(diǎn)(4,1),則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1B.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=|2x-1|,x∈R.
(Ⅰ)求不等式|f(x)-2|≤5的解集;
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)y=log2(ax2-2x+2)定義域?yàn)锳、值域?yàn)锽.
(1)若A=R,求實(shí)數(shù)a的取值范圍:
(2)若B=R,求實(shí)數(shù)a的取值范圍;
(3)若log2(ax2-2x+2)>2在x∈[1,2]上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin4xcosφ+sinφ-2sinφsin22x(0<φ<π)的圖象關(guān)于y軸對(duì)稱.
(I)求函數(shù)f(x)的最小正周期與φ的值;
(Ⅱ)若函數(shù)y=g(x)的圖象是由函數(shù)y=f(x)的圖象上所有的點(diǎn)向左平行移動(dòng)$\frac{π}{6}$個(gè)單位內(nèi)而得到,且g(x)在區(qū)間(0,m)內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案