2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(x,-2),且$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則實(shí)數(shù)x的值等于( 。
A.-4B.4C.-6D.6

分析 利用向量共線定理的坐標(biāo)運(yùn)算性質(zhì)即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow$=(2+x,-1),
2$\overrightarrow{a}$-$\overrightarrow$=(4-x,4),
∵$\overrightarrow{a}$+$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,
∴4(2+x)+(4-x)=0,
解得x=-4.
故選:A.

點(diǎn)評(píng) 本題考查了向量共線定理的坐標(biāo)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=-x3-x+sinx,不等式f(m+sinθ)+f(cos2θ)>0對(duì)任意θ∈(0,$\frac{π}{2}$)都成立,則實(shí)數(shù)m的取值范圍(-∞,-$\frac{25}{12}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知F1,F(xiàn)2分別是雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為雙曲線右支上的一點(diǎn),PF1與以F2為圓心,|OF2|為半徑的圓相切于點(diǎn)Q,且Q恰好是PF1的中點(diǎn),則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{3}+1}}{2}$B.$\sqrt{3}+1$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,當(dāng)函數(shù)g(x)=k-f(x)有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是( 。
A.<k<2B.k≥2C.2<k≤4D.2≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,其中,四邊形ABCD為正方形,△PAD是正三角形,M是PD的中點(diǎn).
(1)求證:AM⊥平面PCD;
(2)設(shè)二面角P-BC-A的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.冪函數(shù)f(x)=k•xα的圖象過(guò)點(diǎn)$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,則k+α=( 。
A.$\frac{1}{3}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a,b∈R+,函數(shù)f(x)=alog2x+b的圖象經(jīng)過(guò)點(diǎn)(4,1),則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.6-2$\sqrt{2}$B.6C.4+2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)y=x${\;}^{\frac{1}{5}}$,y=x${\;}^{\frac{1}{4}}$,y=x${\;}^{-\frac{2}{3}}$,y=x${\;}^{-\frac{1}{2}}$中,定義域?yàn)閧x∈R|x>0}的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合A={2,3},B={2,3,4},C={3,4,5}則(A∩B)∪C=(  )
A.{2,3,4}B.{2,3,5}C.{3,4,5}D.{2,3,4,5}

查看答案和解析>>

同步練習(xí)冊(cè)答案