19.已知圓錐的底面半徑為3,高是4,則圓錐側(cè)面積等于15π.

分析 由已知中圓錐的底面半徑和高,求出圓錐的母線長,代入圓錐側(cè)面積公式,可得答案.

解答 解:∵圓錐的底面半徑r=3,高h(yuǎn)=4,
∴圓錐的母線l=$\sqrt{{r}^{2}+{h}^{2}}$=5,
∴圓錐側(cè)面積S=πrl=15π,
故答案為:15π.

點(diǎn)評 本題考查的知識點(diǎn)是旋轉(zhuǎn)體,熟練掌握各種旋轉(zhuǎn)體的幾何特征,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績后,得到如下的2×2列聯(lián)表
優(yōu)秀非優(yōu)秀合計(jì)
甲班104050
乙班203050
合計(jì)3070100
(Ⅰ)根據(jù)列聯(lián)表的數(shù)據(jù),判斷是否有99%的把握認(rèn)為“成績與班級有關(guān)系”;
(Ⅱ)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班10名優(yōu)秀學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號.試求抽到8號的概率.
參考公式與臨界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2-2|x|-3,(x∈[-4,4]).
(1)求證:f(x)是偶函數(shù);
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間,并說明在各個單調(diào)區(qū)間上f(x)是單調(diào)遞增還是單調(diào)遞減;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.一個幾何體的正視圖是長為3、寬為1的矩形,側(cè)視圖是腰長為2的等腰三角形,則該幾何的表面積為12+8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,(-4≤x<0)}\\{-x+3,(x≥0)}\end{array}\right.$,若f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域、值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)=2x-x2,則f(-1)+f(0)+f(3)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,若tanA=2tanB,a2-b2=$\frac{1}{3}$c,則c=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2+(m-2)x-5-m有兩個小于2的零點(diǎn),則實(shí)數(shù)m的取值范圍( 。
A.(5,+∞)B.(2,+∞)C.(-∞,2)D.(2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={1,-2,x2-1},B={1,x2-3x,0}.若A=B.求實(shí)數(shù)x的值.

查看答案和解析>>

同步練習(xí)冊答案