19.如圖是某樣本數(shù)據(jù)的莖葉圖,則該樣本數(shù)據(jù)的中位數(shù)為( 。
A.22B.25C.28D.31

分析 根據(jù)莖葉圖中的數(shù)據(jù),數(shù)據(jù)從小到大排好,即可確定中位數(shù).

解答 解:根據(jù)莖葉圖中的數(shù)據(jù),按照從小到大的順序排列如下:
10,13,16,22,22,25,28,31,34,37,39;
所以排在中間的25是中位數(shù).
故選:B.

點(diǎn)評(píng) 本題考查了利用莖葉圖中的數(shù)據(jù)求中位數(shù)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線x+y+1=0被圓O:x2+y2=r2(r>0)所截得的弦長為$\sqrt{2}$.
(Ⅰ) 求圓O的方程;
(Ⅱ) 如圖,圓O分別交x軸正、負(fù)半軸于點(diǎn)A,B,交y軸正半軸于點(diǎn)C,過點(diǎn)C的直線l交圓O于另一不同點(diǎn)D(點(diǎn)D與點(diǎn)A,B不重合),且與x軸相交于點(diǎn)P,直線AD與BC相交于點(diǎn)Q,求$\overrightarrow{OP}•\overrightarrow{OQ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x2-2x≤0},B={0,1,2,3},則A∩B=( 。
A.{1,2}B.{0,1,2}C.{1}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若sinα=-$\frac{12}{13}$,α為第三象限的角,則cos($α+\frac{π}{4}$)等于(  )
A.$\frac{7}{13}$B.$\frac{7}{26}$C.-$\frac{7\sqrt{2}}{13}$D.$\frac{7\sqrt{2}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a=log827,則2a+2-a=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l的傾斜角為θ,若cosθ=$\frac{4}{5}$,則該直線的斜率為( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$±\frac{3}{4}$D.$±\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=sinx+cosx.
(1)若f(x)=2f(-x),求$\frac{co{s}^{2}x-sinxcosx}{1+si{n}^{2}x}$的值;
(2)求函數(shù)F(x)=f(x)•f(-x)+f2(x)的最大值和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c,且$asinB-\sqrt{3}bcosA=0$
(Ⅰ)求角A
(Ⅱ)若${\overrightarrow{AB}^2}+\overrightarrow{AC}•\overrightarrow{BC}-{\overrightarrow{BC}^2}=4$,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在日前舉行的全國大學(xué)生智能總決賽中,某高校學(xué)生開發(fā)的智能機(jī)器人在一個(gè)標(biāo)注了平面直角坐標(biāo)系的平面上從坐標(biāo)原點(diǎn)出發(fā),每次只能移動(dòng)一個(gè)單位,沿x軸正方向移動(dòng)的概率是$\frac{2}{3}$,沿y軸正方向移動(dòng)的概率為$\frac{1}{3}$,則該機(jī)器人移動(dòng)6次恰好移動(dòng)到點(diǎn)(3,3)的概率為$\frac{160}{729}$.

查看答案和解析>>

同步練習(xí)冊答案