17.已知整數(shù)a,b滿足$\sqrt{4cos80°+3sin80°+5}$=asin40°+bcos40°,則a+b=4.

分析 利用二倍角公式化簡(jiǎn)求值即可.

解答 解:$\sqrt{4cos80°+3sin80°+5}$
=$\sqrt{4{cos}^{2}40°-4{sin}^{2}40°+6sin40°cos40°+5{sin}^{2}40°+5{cos}^{2}40°}$
=$\sqrt{{sin}^{2}40°+6sin40°cos40°+9{cos}^{2}40°}$
=|sin40°+3cos40°|=asin40°+bcos40°.
可得a=1,b=3.
∴a+b=4.
故答案為:4.

點(diǎn)評(píng) 本題考查二倍角公式以及三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=sin(-2x+$\frac{π}{4}$)(x∈R)的值域?yàn)閇-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若tan(x-$\frac{π}{3}$)>1,則x的取值范圍是$(kπ+\frac{7π}{12},kπ+\frac{5π}{6})$(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)全集U={小于9的正整數(shù)},A={1,2,3},B={3,4,5,6},求A∪B,∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知全集U={不大于20的質(zhì)數(shù)},且A∩∁uB={3,5},∁uA∩B={7,19},∁uA∩∁uB={2,17}.
(1)用列舉法表示全集U;
(2)求集合A,B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}是以-$\frac{1}{2}$為公比的等比數(shù)列,且a3=1,記{an}的前n項(xiàng)和為Tn,數(shù)列{rn}滿足rn=Tn-$\frac{1}{{T}_{n}}$,記數(shù)列{rn}的最大項(xiàng)為a,最小項(xiàng)為b,則a+b=$\frac{21}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡(jiǎn):
(1)tanα(cosα-sinα)+$\frac{sinα(sinα+tanα)}{1+cosα}$
(2)$\sqrt{\frac{1-cosθ}{1+cosθ}}$+$\sqrt{\frac{1+cosθ}{1-cosθ}}$(θ∈($\frac{π}{2}$,π))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知梯形ABCD中,AD∥BC,則$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{BC}$=$\overrightarrow{OD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某平面區(qū)域?yàn)樽鴺?biāo)平面上由點(diǎn)A(0,30),B(18,27),C(20,0),D(2,3)所圍成的平行四邊形及其內(nèi)部.已知目標(biāo)函數(shù)z=ax+by(a,b∈R)在D點(diǎn)有最小值48,則此目標(biāo)函數(shù)的最大值為432.

查看答案和解析>>

同步練習(xí)冊(cè)答案