分析 (1)由于f(x)是偶函數(shù),可得f(-x)=f(x),化為sinxsinθ=0,由于對于x∈R上式都成立,可得sinθ=0.即可得出.
(2)利用和差公式與倍角公式可得:f(x)=cos(x-θ)-cosθ-1.f(x)的最大值是$\frac{1}{2}$,可得cos(x-θ)=1,cosθ=0.再利用倍角公式即可得出.
解答 解:(1)∵f(x)是偶函數(shù),∴f(-x)=f(x),∴-2sin$\frac{x}{2}$sin(θ+$\frac{x}{2}$)-1=2sin$\frac{x}{2}$sin(θ-$\frac{x}{2}$)-1,
化為sinxsinθ=0,由于對于x∈R上式都成立,∴sinθ=0.
∴θ=$kπ+\frac{π}{2}$(k∈Z),∴$cos\frac{θ}{2}$=$cos(\frac{kπ}{2}+\frac{π}{4})$=$±\frac{\sqrt{2}}{2}$.
(2)f(x)=2sin$\frac{x}{2}$sin(θ-$\frac{x}{2}$)-1=$2sin\frac{x}{2}$$(sinθcos\frac{x}{2}-cosθsin\frac{x}{2})$-1
=sinθsinx-cosθ(1-cosx)-1
=cos(x-θ)-cosθ-1.
f(x)的最大值是$\frac{1}{2}$,
∴cos(x-θ)=1,cosθ=0.
則cos2θ=2cos2θ-1=-1.
故答案分別為:(1)$±\frac{\sqrt{2}}{2}$;(2)-1.
點評 本題考查了三角函數(shù)的圖象與性質(zhì)、和差公式與倍角公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或6 | B. | 0或8 | C. | 2或0 | D. | 6或8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com