4.某校為了解高一學(xué)生的數(shù)學(xué)水平,隨機(jī)抽取了高一男,女生各40人參加數(shù)學(xué)等級(jí)考試,得到男生數(shù)學(xué)成績(jī)的頻數(shù)分布表和女生數(shù)學(xué)成績(jī)的頻率分布直方圖如下:
男生數(shù)學(xué)成績(jī)的頻數(shù)分布表
成績(jī)分組[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2816104

(Ⅰ)畫出男生數(shù)學(xué)成績(jī)的頻率分布直方圖,并比較該校高一男,女生數(shù)學(xué)成績(jī)的方差大;(只需寫出結(jié)論)
(Ⅱ)根據(jù)女生數(shù)學(xué)成績(jī)的頻率分布直方圖,估計(jì)該校高一女生的數(shù)學(xué)平均成績(jī);
(Ⅲ)依據(jù)學(xué)生的數(shù)學(xué)成績(jī),將學(xué)生的數(shù)學(xué)水平劃分為三個(gè)等級(jí):
數(shù)學(xué)成績(jī)低于70分70~90分不低于90分
數(shù)學(xué)水平一般良好優(yōu)秀
估計(jì)該校高一男,女生誰的“數(shù)學(xué)水平良好”的可能性大,并說明理由.

分析 (Ⅰ)由男生數(shù)學(xué)成績(jī)的頻數(shù)分布表能作出男生數(shù)學(xué)成績(jī)的頻率分布直方圖,由頻率分布直方圖得高一男生數(shù)學(xué)成績(jī)的方差小于女生數(shù)學(xué)成績(jī)的方差.
(Ⅱ)利用頻率分布直方能求出高一女生的數(shù)學(xué)平均成績(jī).
(Ⅲ)由頻率分布直方圖能求出“高一男生數(shù)學(xué)水平良好”的概率和“高一女生數(shù)學(xué)水平良好”的概率,從而得到該校高一男生的數(shù)學(xué)水平良好的可能性大.

解答 解:(Ⅰ)∵男生數(shù)學(xué)成績(jī)的頻數(shù)分布表:

成績(jī)分組[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2816104
∴男生數(shù)學(xué)成績(jī)的頻率分布直方圖:

由頻率分布直方圖得高一男生數(shù)學(xué)成績(jī)的方差小于女生數(shù)學(xué)成績(jī)的方差.
(Ⅱ)高一女生的數(shù)學(xué)平均成績(jī)?yōu)椋?br />45×0.05+55×0.1+65×0.25+75×0.3+85×0.2+95×0.1=73.
(Ⅲ)若把頻率看作相應(yīng)的概率,
則“高一男生數(shù)學(xué)水平良好”的概率為:0.040×10+0.025×10=0.65,
“高一女生數(shù)學(xué)水平良好”的概率為:0.030×10+0.020×10=0.5,
所以該校高一男生的數(shù)學(xué)水平良好的可能性大.

點(diǎn)評(píng) 本題考查頻率分布直方圖的作法及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意利用頻率分布直方圖求概率、平均數(shù)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知${a}^{\frac{1}{2}}$+${a}^{-\frac{1}{2}}$=3,則a+a-1=7,a2+a-2=47.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.運(yùn)行如圖所示的偽代碼,其結(jié)果為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)m,n∈(0,+∞),若直線(m+2)x+(n+2)y-4=0與圓(x-1)2+(y-1)2=1相切,則m+n的最小值是( 。
A.4+4$\sqrt{2}$B.2+2$\sqrt{2}$C.4+$\sqrt{2}$D.4+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=lnx+2sinα(α∈(0,$\frac{π}{2}$))的導(dǎo)函數(shù)f′(x),若存在x0<1使得f′(x0)=f(x0)成立,則實(shí)數(shù)α的取值范圍為( 。
A.($\frac{π}{3}$,$\frac{π}{2}$)B.(0,$\frac{π}{3}$)C.($\frac{π}{6}$,$\frac{π}{2}$)D.(0,$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(-2,-1),$\overrightarrow{a}$•$\overrightarrow$=10,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow$|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16. 如圖,有一塊半徑為2的半圓形鋼板,計(jì)劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上,寫出這個(gè)梯形的周長(zhǎng)y和腰長(zhǎng)x之間的函數(shù)解析式,并求出它的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知全集I={1,2,3,4,5,6},集合A={3,4,5},B={1,5,6},則圖中陰影部分表示的集合是( 。
A.{2,3,4}B.{2,3,4,5}C.{3,4}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知ABCD-A1B1C1D1為正方體,E、F分別是AB、B1C1的中點(diǎn).
(1)求證:直線EF∥平面ACC1A1;
(2)求直線BC1與平面ACC1A1所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案