A. | $6\sqrt{3}$ | B. | $5\sqrt{3}$ | C. | $3\sqrt{3}$ | D. | $\sqrt{3}$ |
分析 由$\left\{\begin{array}{l}{x-1≥0}\\{10-2x≥0}\end{array}\right.$,可得函數(shù)f(x)的定義域為[1,5].f′(x)=$\frac{5\sqrt{10-2x}-2\sqrt{x-1}}{2\sqrt{x-1}\sqrt{10-2x}}$,令5$\sqrt{10-2x}$-2$\sqrt{x-1}$=0,解得x,利用導數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.
解答 解:由$\left\{\begin{array}{l}{x-1≥0}\\{10-2x≥0}\end{array}\right.$,解得1≤x≤5,∴函數(shù)f(x)的定義域為[1,5].
f′(x)=$\frac{5}{2\sqrt{x-1}}$+$\frac{-1}{\sqrt{10-2x}}$=$\frac{5\sqrt{10-2x}-2\sqrt{x-1}}{2\sqrt{x-1}\sqrt{10-2x}}$,
令5$\sqrt{10-2x}$-2$\sqrt{x-1}$=0,解得x=$\frac{127}{27}$.
∴函數(shù)f(x)在$[1,\frac{127}{27})$上單調(diào)遞增,在$(\frac{127}{27},5]$上單調(diào)遞減.
可知:當x=$\frac{127}{27}$時,函數(shù)f(x)取得最大值=5$\sqrt{\frac{127}{27}-1}$+$\sqrt{10-2×\frac{127}{27}}$=6$\sqrt{3}$.
故選:A.
點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 5或6 | D. | 6或7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $-\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $-\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(-\frac{1}{3},-\frac{1}{17})$ | B. | $(-\frac{1}{9},-\frac{1}{17})$ | C. | $(-\frac{1}{3},-\frac{1}{11})$ | D. | $(-\frac{1}{9},-\frac{1}{11})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 2 | 3 | 4 | 5 | 6 |
y | 22 | 38 | 55 | 65 | 70 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com