16.已知在數(shù)列{an}中,an+1=$\frac{n}{n+2}$an,且a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n頂和Sn

分析 (1)由an+1=$\frac{n}{n+2}$an,且a1=2.可得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+2}$.利用“累乘求積”即可得出.
(2)由(1)可得:an=4$(\frac{1}{n}-\frac{1}{n+1})$.利用“裂項(xiàng)求和”即可得出.

解答 解:(1)∵an+1=$\frac{n}{n+2}$an,且a1=2.
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n}{n+2}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{3}}{{a}_{2}}•\frac{{a}_{2}}{{a}_{1}}•{a}_{1}$
=$\frac{n-1}{n+1}$$•\frac{n-2}{n}$•$\frac{n-3}{n-1}$•…•$\frac{2}{4}$•$\frac{1}{3}$•2
=$\frac{4}{n(n+1)}$(n=1時(shí)也成立).
∴an=$\frac{4}{n(n+1)}$.
(2)由(1)可得:an=4$(\frac{1}{n}-\frac{1}{n+1})$.
∴數(shù)列{an}的前n頂和Sn=4$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=4$(1-\frac{1}{n+1})$
=$\frac{4n}{n+1}$.

點(diǎn)評(píng) 本題考查了“累乘求積”方法、“累加求和”方法、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知b=acosC+3bsin(B+C).
(1)若$\frac{c}=\sqrt{3}$,求角A;
(2)在(1)的條件下,若△ABC的面積為$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,給出下列命題:
①“a2+b2>c2”是“C角為銳角”的充要條件;
②“△ABC為銳角三角形”是“a5+b5=c5“的既不充分也不必要條件;
③“a${\;}^{\frac{5}{4}}$+b${\;}^{\frac{5}{4}}$=c${\;}^{\frac{5}{4}}$”是“△ABC為鈍角三角形”的充分不必要條件;
④若命題p:?A>B,sinA>sinB,則¬p:?A>B,sinA<sinB.
其中所有正確命題的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在邊長為1的等邊△ABC中,E為AC上一點(diǎn),且AC=4AE,P為BE上一點(diǎn)且滿足$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0).則$\frac{1}{m}$+$\frac{1}{n}$取最小值時(shí),|$\overrightarrow{AP}$|=$\frac{\sqrt{7}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,圓錐形容器的高為h,圓錐內(nèi)水面的高為h1,且h${\;}_{1}=\frac{1}{3}h$,若將圓錐的倒置,水面高為h2,則h2等于( 。
A.$\frac{2}{3}$hB.$\frac{19}{27}h$C.$\frac{\root{3}{6}}{3}$hD.$\frac{\root{3}{19}}{3}$h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)x,y,z∈[0,1],求證:
(1)x(1-y)+y(1-x)≤1;
(2)x(1-y)+y(1-z)+z(1-x)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若動(dòng)點(diǎn)P,Q在橢圓9x2+16y2=144上,且滿足OP⊥OQ,則中心O到弦PQ的距離OH必等于( 。
A.$\frac{20}{3}$B.$\frac{23}{4}$C.$\frac{12}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(x,-1),且$\overrightarrow{a}-\overrightarrow$與$\overrightarrow$共線,則|x|的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.a(chǎn),b為正數(shù),$\frac{1}{a}+\frac{1}$$≤2\sqrt{2}$,(a-b)2=4(ab)3,則a+b=2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案