14.設(shè)函數(shù)f(x)是定于在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x-b(b為常數(shù)),則f(-1)的值為-3.

分析 根據(jù)函數(shù)奇偶性的性質(zhì)利用f(0)=0,求出b的值,結(jié)合函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求值即可.

解答 解:∵函數(shù)f(x)是定于在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x-b,
則f(0)=0,即f(0)=1-b=0,得b=1,
則當(dāng)x≥0時(shí),f(x)=2x+2x-1,
則f(-1)=-f(1)=-(2+2-1)=-3,
故答案為:-3

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求出b的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.平面上四點(diǎn)A,B,C,D,它們的坐標(biāo)分別為A(-4,0),B(0,4),C(0,0),D(3cosα,3sinα),α∈(0,π).
(Ⅰ)若AB∥CD,求角α的值:
(Ⅱ)若AB⊥CD,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且bsinA=($\sqrt{2}$b-c)sinB.
(1)求證:$\sqrt{2}$a,b,$\sqrt{2}$c成等差數(shù)列;
(2)若sinC=5sinA,求cosB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若p,q∈R,則|p|<|q|成立的一個(gè)充分不必要條件是( 。
A.q>p>0B.p>q>0C.p<q<0D.p=q≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某食堂以面食和米食為主食,員工良好的日常飲食應(yīng)該至少需要碳水化合物5個(gè)單位,蛋白質(zhì)6個(gè)單位,脂肪6個(gè)單位,每份面食含有7個(gè)單位的碳水化合物,7個(gè)單位的蛋白質(zhì),14個(gè)單位的脂肪,花費(fèi)28元;而每份米食含有7個(gè)單位的碳水化合物,14個(gè)單位的蛋白質(zhì),7個(gè)單位的脂肪,花費(fèi)21元.為了滿足員工的日常飲食要求,同時(shí)使花費(fèi)最低,需要同時(shí)采購(gòu)面食和米食各多少份?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題中的假命題是( 。
A.若a<b<0,則$\frac{1}{a}>\frac{1}$B.若$\frac{1}{a}>1$,則0<a<1C.若a>b>0,則a4>b4D.若a<1,則$\frac{1}{a}<1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx),且ω>0,設(shè)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,f(x)的圖象相鄰兩對(duì)稱軸之間的距離等于$\frac{π}{2}$
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,b+c=4,f(A)=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知f(x)=x5+ax3+bx-10,且f(-3)=10,則f(3)=-30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)A(3,3,1),B(1,0,5),則A,B的距離為$\sqrt{29}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案