3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的中心為坐標(biāo)原點(diǎn)O,左焦點(diǎn)為F,以O(shè)F為直徑的圓交雙曲線于點(diǎn)P,且4$\overrightarrow{OP}$•$\overrightarrow{OF}$=$\overrightarrow{OF}$2,則該雙曲線的離心率是( 。
A.$\frac{\sqrt{10}-\sqrt{2}}{2}$B.$\frac{\sqrt{10}+\sqrt{2}}{2}$C.$\sqrt{7}$-$\sqrt{3}$D.$\sqrt{7}$+$\sqrt{3}$

分析 通過以O(shè)F為直徑的圓交雙曲線于點(diǎn)P得向量的垂直,向量的數(shù)量積得到∠FOP=60°,設(shè)雙曲線另一個(gè)焦點(diǎn)為F',則在△POF'中,利用余弦定理以及雙曲線的定義,即可求出雙曲線的離心率.

解答 解:∵以O(shè)F為直徑的圓交雙曲線于點(diǎn)P,
∴$\overrightarrow{OP}$⊥$\overrightarrow{PF}$,
∴4$\overrightarrow{OP}$•$\overrightarrow{OF}$=4|$\overrightarrow{OP}$||$\overrightarrow{OF}$|•$\frac{|\overrightarrow{OP}|}{|\overrightarrow{OF}|}$=4|$\overrightarrow{OP}$|2=$\overrightarrow{OF}$2=c2,
∴|$\overrightarrow{OP}$|=$\frac{1}{2}$c,∠FOP=60°,
設(shè)雙曲線另一個(gè)焦點(diǎn)為F',則在△POF'中,
由余弦定理可得|PF′|=$\frac{\sqrt{7}}{2}$c,
又|PF|=$\frac{\sqrt{3}}{2}$c,
由雙曲線定義得$\frac{\sqrt{7}}{2}$c-$\frac{\sqrt{3}}{2}$c=2a,
所以離心率e=$\sqrt{7}$+$\sqrt{3}$,
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,向量的數(shù)量積的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,E、F、G、H分別是平行四邊形ABCD各邊的中點(diǎn),則圖中與向量$\overrightarrow{GH}$相等的向量有( 。
A.6個(gè)B.5個(gè)C.4個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,AB=6,AC=4,BC=3,則$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$+$\overrightarrow{CA}$•$\overrightarrow{CB}$的值為$\frac{61}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求函數(shù)y=cos2x-2acosx+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若f(x)的圖象關(guān)于y軸對(duì)稱,且有${∫}_{0}^{6}$f(x)dx=3,則${∫}_{-6}^{6}$f(x)dx=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.①把11°15′化成弧度;
②把$\frac{5π}{18}$rad化成度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)f(x)=$\frac{1}{\sqrt{x-2}}$+log2(x2+4x-5)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某地?cái)M建造一座大型體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓如圖所示:曲線AB是以點(diǎn)E為圓心的圓的一部分,其中E(0,t)(0<t≤25);曲線BC是拋物線y=-ax2+50(a>0)的一部分;CD⊥AD,且CD恰好等于圓E的半徑.假定擬建體育館的高OB=50(單位:米,下同).
(1)若t=20、a=$\frac{1}{49}$,求CD、AD的長(zhǎng)度;
(2)若要求體育館側(cè)面的最大寬度DF不超過75米,求a的取值范圍;
(3)若a=$\frac{1}{25}$,求AD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),過點(diǎn)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)M(-a,0)斜率為k的直線交橢圓于點(diǎn)N,直線NO(O為坐標(biāo)原點(diǎn))交橢圓于另一點(diǎn)P,若k∈[$\frac{1}{2}$,1],求△PMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案