19.已知實(shí)數(shù)x,y,z滿足$\left\{\begin{array}{l}xy+2z=1\\{x^2}+{y^2}+{z^2}=5\end{array}\right.$則xyz的最小值為$9\sqrt{11}-32$.

分析 由xy+2z=1,可得z=$\frac{1-xy}{2}$=$\frac{1-t}{2}$.可得5=x2+y2+$(\frac{1-xy}{2})^{2}$,≥±2xy+$\frac{(1-xy)^{2}}{4}$,化為:x2y2+6xy-19≤0,或:x2y2-10xy-19≤0.解出經(jīng)過(guò)比較利于二次函數(shù)的單調(diào)性可得.

解答 解:由xy+2z=1,可得z=$\frac{1-xy}{2}$=$\frac{1-t}{2}$.
∴5=x2+y2+$(\frac{1-xy}{2})^{2}$≥2|xy|+$\frac{(1-xy)^{2}}{4}$,化為:x2y2+6xy-19≤0,或:x2y2-10xy-19≤0.
由x2y2+6xy-19≤0,解得:0≤xy≤-3+2$\sqrt{7}$.
由x2y2-10xy-19≤0,解得:5$-2\sqrt{11}$≤xy≤0.
∴xyz=xy×$\frac{1-xy}{2}$=$-\frac{1}{2}$$(xy-\frac{1}{2})^{2}$+$\frac{1}{8}$,
可得:經(jīng)過(guò)比較利于二次函數(shù)的單調(diào)性可得:xy=5$-2\sqrt{11}$時(shí),xyz取得最小值為$9\sqrt{11}-32$.
故答案為:$9\sqrt{11}-32$.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若關(guān)于x,y的方程組$\left\{{\begin{array}{l}{ax+y-1=0}\\{4x+ay-2=0}\end{array}}\right.$有無(wú)數(shù)多組解,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.學(xué)校擬安排六位老師至5 月1日至5月3日值班,要求每人值班一天,每天安排兩人,若六位老師中王老師不能值5月2日,李老師不能值5月3日的班,則滿足此要求的概率為$\frac{7}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)$\overrightarrow a$,$\overrightarrow b$是兩個(gè)向量,則“$|{\overrightarrow a+\overrightarrow b}|>|{\overrightarrow a-\overrightarrow b}|$”是“$\overrightarrow a•\overrightarrow b>0$”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知圓C:(x-a)2+(y-b)2=2,圓心C在曲線y=$\frac{1}{x}$(x∈[1,2])上.則ab=1,直線l:x+2y=0被圓C所截得的長(zhǎng)度的取值范圍是[$\frac{2\sqrt{5}}{5}$,$\frac{2\sqrt{10}}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若x,y滿足不等式$\left\{\begin{array}{l}{x≥2}\\{x+y≤6}\\{x-2y≤0}\end{array}\right.$,則z=x2+y2的最小值是( 。
A.2B.$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線x+ay+2=0與圓x2+y2+2x-2y+1=0有公共點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.a>0B.a≥0C.a≤0D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知四邊形ABCD為直角梯形,∠DAB=∠ABC=90°,AB=1,AD=2BC=$\sqrt{2}$,若△PAD是以AD為底邊的等腰直角三角形,且PA⊥CD.
(1)證明:PC⊥平面PAD;
(2)求直線AB與平面PBC所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于實(shí)軸對(duì)稱,若${z_1}=\frac{1+3i}{1-i}$,則z1+z2等于( 。
A.4iB.-4iC.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案