分析 由正弦定理化簡(jiǎn)已知可得:cosCcosB=2sinA−sinCsinB,整理得sinA=2sinAcosB,由sinA≠0,解得cosB=12,可求B,又R=√3,即可求得b的值.
解答 解:由正弦定理:asinA=sinB=csinC=2R 得a=2RsinA,b=2RsinB,c=2RsinC,
代入cosCcosB=2a−c 得cosCcosB=2sinA−sinCsinB.
整理得sinBcosC+cosBsinC=2sinAcosB,
即sin(B+C)=2sinAcosB,
∵A+B+C=180°,∴sin(B+C)=sinA,
∴sinA=2sinAcosB,
∵sinA≠0,∴cosB=12,∴B=60°,又∵R=√3.
∴b=2RsinB=2√3sin60°=3.
點(diǎn)評(píng) 本題主要考查了正弦定理,三角形內(nèi)角和定理在解三角形中的應(yīng)用,熟練掌握相關(guān)公式定理是解題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a1008>b1008 | B. | a1008=b1008 | C. | a1008≤b1008 | D. | a1008≥b1008 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -\frac{π}{6} | B. | \frac{π}{6} | C. | -\frac{π}{3} | D. | \frac{π}{3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com