20.如圖,C是⊙O的直徑AB上一點,CD⊥AB,與⊙O相交于點D,與弦AF交于點E,與BF的延長線交于點G,GT與⊙O相切于點T.
(Ⅰ)證明:CE•CG=CD2;
(Ⅱ)若AC=CO=1,CD=3CE,求GT.

分析 (Ⅰ)延長DC與圓O交于點M,利用相交弦定理,結(jié)合Rt△ACE∽Rt△GBC,證明:CE•CG=CD2;
(Ⅱ)若AC=CO=1,CD=3CE,求得CG=3CD,利用切割線定理求GT.

解答 (Ⅰ)證明:延長DC與圓O交于點M,
因為CD⊥AB,
所以CD2=CD•CM=AC•BC,
因為Rt△ACE∽Rt△GBC,所以$\frac{AC}{CE}$=$\frac{CG}{BC}$,
即AC•BC=CE•CG,故CD2=CE•CG.…(5分)
(Ⅱ)解:因為AC=CO=1,所以CD2=AC•BC=3,
又CD=3CE,由(Ⅰ)得CG=3CD,
GT2=GM•GD=(CG+CM)•(CG-CD)=(CG+CD)•(CG-CD)
=CG2-CD2=8CD2=24,故GT=2$\sqrt{6}$.…(10分)

點評 本題考查相交弦定理、切割線定理,考查三角形相似的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z1=2+i,z2=m+i,若z1•z2是純虛數(shù),則m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.運行如下程序框圖,如果輸入的x∈(-∞,1],則輸出的y屬于( 。
A.[-$\frac{1}{e}$,0]B.[-$\frac{1}{e}$,0)C.[-$\frac{1}{e}$,+∞)D.[-$\frac{1}{e}$,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}a{x^2}+x({a>-\frac{1}{4}})$.
(Ⅰ)若函數(shù)f(x)在點(1,f(1))處的切線與直線y=x平行,求a的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=0,m>0時,方程2mf(x)=x2有唯一實數(shù)解,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(2sinx,-cosx),$\overrightarrow$=($\sqrt{3}$cosx,2cosx),f(x)=$\overrightarrow{a}$•$\overrightarrow$+1
(I)求函數(shù)f(x)的最小正周期,并求當(dāng)$x∈[{\frac{π}{12},\frac{2π}{3}}]$時f(x)的取值范圍;
(Ⅱ)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)g(x)的圖象.在△ABC中,角A,B,C的對邊分別為a,b,c,若g$({\frac{A}{2}})$=1,a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.正數(shù)列{an}的前n項和Sn滿足:rSn=anan+1-1,a1=a>0,常數(shù)r∈N.
(Ⅰ)求證:an+2-an為定值;
(Ⅱ)若數(shù)列{an}是一個周期數(shù)列(即存在非零常數(shù)T,使an+T=an恒成立),求該數(shù)列的最小正周期;
(Ⅲ)若數(shù)列{an}是一個各項為有理數(shù)的等差數(shù)列,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.有排列成一行的四戶人家.已知:小王家在小李家的隔壁,小王家與小張家并不相鄰.如果小張家與小趙家也不相鄰,那么,小趙家的隔壁是小王家.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在自然數(shù)列1,2,3,…,n中,任取k個元素位置保持不動,將其余n-k個元素變動位置,得到不同的新數(shù)列.由此產(chǎn)生的不同新數(shù)列的個數(shù)記為Pn(k).
(1)求P3(1)
(2)求$\sum_{k=0}^{4}$P4(k);
(3)證明$\sum_{k=0}^{n}$kPn(k)=n$\sum_{k=0}^{n-1}$Pn-1(k),并求出$\sum_{k=0}^{n}$kPn(k)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=(1+x-$\frac{x^2}{2}$+$\frac{x^3}{3}$-$\frac{x^4}{4}$+…-$\frac{{{x^{2012}}}}{2012}$+$\frac{{{x^{2013}}}}{2013}$-$\frac{{{x^{2014}}}}{2014}$+$\frac{{{x^{2015}}}}{2015}}$)cos2x在區(qū)間[-3,3]上零點的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊答案