分析 要使x-y最大,只需tan(x-y)最大,利用基本不等式求得tan(x-y)的最大值,可得x-y的最大值.
解答 解:∵0<y≤x<$\frac{π}{2}$且tanx=3tany,∴0≤x-y<$\frac{π}{2}$,要使x-y最大,只需tan(x-y)最大.
又tan(x-y)=$\frac{tanx-tany}{1+tanxtany}$=$\frac{2tany}{1+{3tan}^{2}y}$=$\frac{2}{\frac{1}{tany}+3tany}$≤$\frac{\sqrt{3}}{3}$,當(dāng)且僅當(dāng)tany=$\frac{\sqrt{3}}{3}$時(shí),等號(hào)成立,
此時(shí),y=$\frac{π}{6}$,tanx=$\sqrt{3}$,x=$\frac{π}{3}$,故x-y的最大值為$\frac{π}{3}$-$\frac{π}{6}$=$\frac{π}{6}$,
故答案為:$\frac{π}{6}$.
點(diǎn)評(píng) 本題主要考查基本不等式的應(yīng)用,特殊角的三角函數(shù)值,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,1)∪(1,+∞) | B. | (0,$\frac{1}{2}$)∪(1,+∞) | C. | ($\frac{1}{2}$,1)∪(1,2) | D. | (0,$\frac{1}{2}$)∪(1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com