分析 根據(jù)正弦定理以及余弦定理和三角形的面積公式建立方程關(guān)系進行求解即可.
解答 解:∵sin2B=sinA•sinC,
∴b2=ac,
∵cosB=$\frac{12}{13}$,
∴sinB=$\sqrt{1-(\frac{12}{13})^{2}}$=$\frac{5}{13}$,
∵S△ABC=$\frac{1}{2}$acsinB=$\frac{5}{2}$,
∴$\frac{1}{2}$ac×$\frac{5}{13}$=$\frac{5}{2}$,
得ac=13,即b2=ac=13,
∵b2=a2+c2-2accosB,
∴13=(a+c)2-2ac-2accosB=(a+c)2-2×13-2×13×$\frac{12}{13}$,
即(a+c)2=63,
即a+c=3$\sqrt{7}$,
故答案為:3$\sqrt{7}$.
點評 本題主要考查正弦定理的應用,根據(jù)余弦定理和三角形的面積公式建立方程關(guān)系是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | 2 | C. | $\frac{2\sqrt{3}}{3}$或2 | D. | $\sqrt{3}$或2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(6)<f(4)<f(1) | B. | f(4)<f(6)<f(1) | C. | f(1)<f(6)<f(4) | D. | f(6)<f(1)<f(4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com