6.拋擲兩顆質(zhì)量均勻的骰子各一次,其中恰有一個點(diǎn)數(shù)為2的概率為$\frac{5}{18}$.

分析 求出所有的基本事件個數(shù)和符合要求的事件個數(shù),代入古典概型的概率公式即可.

解答 解:拋擲兩顆質(zhì)量均勻的骰子各一次共有6×6=36個基本事件,其中恰有一個點(diǎn)數(shù)為2的事件共有10個,
分別是(2,1),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2),
∴恰有一個點(diǎn)數(shù)為2的概率P=$\frac{10}{36}$=$\frac{5}{18}$.
故答案為$\frac{5}{18}$.

點(diǎn)評 本題考查了古典概型的概率計算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.有下列說法:
①一支田徑隊(duì)有男女運(yùn)動員98人,其中男運(yùn)動員有56人.按男、女比例用分層抽樣的方法,從全體運(yùn)動員中抽出一個容量為28的樣本,那么應(yīng)抽取女運(yùn)動員人數(shù)是12人;
②采用系統(tǒng)抽樣法從某班按學(xué)號抽取5名同學(xué)參加活動,學(xué)號為5,27,38,49的同學(xué)均選中,則該班學(xué)生的人數(shù)為60人;
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為$\hat y=2x+256$,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防作用”,利用2×2列聯(lián)表計算得K2的觀測值k≈3.918,經(jīng)查對臨界值表知P(K2≥3.841)≈0.05,由此,得出以下判斷:在犯錯誤的概率不超過0.05的前提下認(rèn)為“這種血清能起到預(yù)防的作用”.
正確的有( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,$acosB-bcosA=\frac{3}{5}c$,則tanAcotB=( 。
A.2B.3C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={x∈Z|0≤x≤8},B={1,2,3,4,5},則∁AB=( 。
A.{6,7,8}B.{0,6,7,8}C.{0,6,7 }D.{6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.我校某高一學(xué)生為了獲得華師一附中榮譽(yù)畢業(yè)證書,在“體音美2+1+1項(xiàng)目”中學(xué)習(xí)游泳.他每次游泳測試達(dá)標(biāo)的概率都為60%,現(xiàn)采用隨機(jī)模擬的方法估計該同學(xué)三次測試恰有兩次達(dá)標(biāo)的概率:先由計算器產(chǎn)生0到9之間的整數(shù)隨機(jī)數(shù),指定1,2,3,4表示未達(dá)標(biāo),5,6,7,8,9,0表示達(dá)標(biāo);再以每三個隨機(jī)數(shù)為一組,代表三次測試的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
917   966   891   925   271   932   872   458   569   683
431   257   393   027   556   488   730   113   507   989
據(jù)此估計,該同學(xué)三次測試恰有兩次達(dá)標(biāo)的概率為( 。
A.0.50B.0.40C.0.43D.0.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}的遞項(xiàng)公式an=(-1)n•2n+n•cos(nπ),其前n項(xiàng)和為Sn,則S10等于687.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=2sin({ωx+φ})({ω>0,|φ|≤\frac{π}{2}})$,其圖象與直線y=-2相鄰兩個交點(diǎn)的距離為π.若f(x)>1對于任意的$x∈({-\frac{π}{12},\frac{π}{6}})$恒成立,則φ的取值范圍是( 。
A.$[{\frac{π}{6},\frac{π}{3}}]$B.$[{\frac{π}{3},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線l1:2x-y=4與直線l2:x-2y=-1相交,其交點(diǎn)P的坐標(biāo)為(  )
A.(2,1)B.$(\frac{7}{3},\frac{2}{3})$C.(1,1)D.(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[t-1,t]時,求f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案