分析 若函數(shù)f(x)=$\frac{2x+3}{x+a}$在區(qū)間(-1,+∞)上單調(diào)遞增,則f′(x)=$\frac{2a-3}{(x+{a)}^{2}}$>0在區(qū)間(-1,+∞)上恒成立,解得答案.
解答 解:∵函數(shù)f(x)=$\frac{2x+3}{x+a}$在區(qū)間(-1,+∞)上單調(diào)遞增,
∴f′(x)=$\frac{2a-3}{(x+{a)}^{2}}$>0在區(qū)間(-1,+∞)上恒成立,
故a>$\frac{3}{2}$.
點評 本題考查的知識點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,熟練掌握導(dǎo)函數(shù)符號與原函數(shù)單調(diào)性之間的關(guān)系,是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等比數(shù)列 | |
B. | 等差數(shù)列 | |
C. | 每項的倒數(shù)成等差數(shù)列 | |
D. | 第二項與第三項分別是第一項與第二項的n次冪 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 3 | 4 | 5 | 6 |
y | 22 | 38 | 55 | 65 | 70 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com