19.設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,a1+a2=3,a2+a3=6,若對(duì)任意n∈N*,求S9的值.

分析 利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵a1+a2=3,a2+a3=6,
∴2d=3,解得d=$\frac{3}{2}$,代入解得a1=$\frac{3}{4}$.
∴S9=$9×\frac{3}{4}$+$\frac{9×8}{2}×\frac{3}{2}$=$\frac{243}{4}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)化簡(jiǎn):$\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$+$\frac{x+1}{{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{1}{3}}}{{x}^{\frac{1}{3}}-1}$;
(2)計(jì)算:($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2005)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列有關(guān)命題的說(shuō)法錯(cuò)誤的是( 。
A.對(duì)于命題P:?x∈R,使得x2+x-1<0,則¬P:?x∈R,均有x2+x-1≥0
B.若兩條不同直線a,b滿足a⊥α,b⊥α,則a∥b
C.“m=-1“是直線l1:mx+(2m-1)y+1=0與l2:3x+my+3=0垂直的充要條件
D.p是q的必要不充分條件,則¬p是¬q的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\frac{sinθ+cosθ}{sinθ-cosθ}=3$,求值:
(1)tanθ; 
(2)cosθ+sinθ(θ為第三象限角)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在數(shù)列{an}中,an+1-an=c(c為非零常數(shù)),且前n項(xiàng)和為Sn=n2-n,則實(shí)數(shù)c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax3+bx-3,若f(-2)=10,求f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式|3x-1|<1的解集為( 。
A.RB.{x|x<0或x>$\frac{2}{3}$}C.{x|-$\frac{1}{3}$$<x<\frac{1}{2}$}D.{x|0$<x<\frac{2}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.求極限$\underset{lim}{n→∞}$$\sqrt{n}$($\sqrt{n+1}$-$\sqrt{n-1}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若3a>3b>1,則( 。
A.b>a>0B.a>b>0C.a>b>1D.b>a>1

查看答案和解析>>

同步練習(xí)冊(cè)答案