20.“$\sqrt{a}>\sqrt$”是“ea>eb”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 “$\sqrt{a}>\sqrt$”等價于a>b,可得“ea>eb”,反之不成立,例如取a=2,b=-1.即可判斷出結(jié)論.

解答 解:∵“$\sqrt{a}>\sqrt$”?a>b⇒“ea>eb”,反之不成立,例如取a=2,b=-1.
∴“$\sqrt{a}>\sqrt$”是“ea>eb”的充分不必要條件. 
故選:A.

點評 本題考查了函數(shù)的單調(diào)性、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸的兩個相鄰交點之間的距離等于$\frac{π}{2}$,若將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個單位長度得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)在區(qū)間[0,$\frac{π}{3}$]上的最大值為(  )
A.0B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.定義M{x,y}=$\left\{\begin{array}{l}{x,(x≥y)}\\{y,(x<y)}\end{array}\right.$,設(shè)a=x2+xy+x,b=4y2+xy+2y(x,y∈R),則M{a,b}的最小值為-$\frac{1}{6}$,當M取到最小值時,x=-$\frac{1}{3}$,y=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{m}$=(sinωx,sin(ωx+$\frac{π}{6}$)),$\overrightarrow{n}$=(cosωx,sinωx),其中ω>0,f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$.
(1)求函數(shù)f(x)的值域;
(2)若f($\frac{π}{6}$)=f($\frac{π}{2}$),且f(x)的圖象在($\frac{π}{6}$,$\frac{π}{2}$)內(nèi)有最高點但無最低點,求ω的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知復(fù)數(shù)z滿足(2-3i)z=3+2i(i是虛數(shù)單位),則z的模為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)$y=2sin(2x+φ)(|φ|<\frac{π}{2})$的圖象經(jīng)過點(0,-1),則該函數(shù)的一個單調(diào)遞增區(qū)間為( 。
A.[-$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{6}$]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的解析式為f(x)=2sin($\frac{π}{3}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)集合A={-1,0,1},B={a-1,a+$\frac{1}{a}}$},A∩B={0},則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=cos(x+$\frac{2π}{5}$)+2sin$\frac{π}{5}$sin(x+$\frac{π}{5}$)的最大值是(  )
A.1B.sin$\frac{π}{5}$C.2sin$\frac{π}{5}$D.$\sqrt{5}$

查看答案和解析>>

同步練習冊答案