18.己知集合A={x|x2+6x+5<0},B={x|$\frac{x+1}{2-x}$≥0}.
(1)求A∪B;
(2)若全集U={x||x|<5},求∁U(A∪B);
(3)若C={x|x<a},且B∩C=B,求實數(shù)a的取值范圍.

分析 (1)解不等式便可求出集合A,B,進行并集的運算即可得出A∪B;
(2)先求出全集U={x|-5<x<5},然后進行補集的運算即可;
(3)根據(jù)條件可得到B⊆C,從而便可得出實數(shù)a的取值范圍.

解答 解:(1)A={x|-5<x<-1},B={x|-1≤x<2};
∴A∪B={x|-5<x<2};
(2)U={x|-5<x<5};
∴∁U(A∪B)={x|2≤x<5};
(3)B∩C=B;
∴B⊆C;
∴a≥2;
∴實數(shù)a的取值范圍為[2,+∞).

點評 考查描述法表示集合的定義及表示形式,全集的定義,以及并集和補集的運算,子集的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)集合A={x|x2-2x+2m+4=0},B={x|x≤4},若A∩B≠∅,則實數(shù)m的取值范圍為m≤-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,α∩β=l,PA⊥α于點A,PB⊥β于點B,AQ⊥l于點Q,求證:BQ⊥l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c∈R,證明:若a+b+c<1,則a,b,c中至少有一個小于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合A={x|2<x<7},B={x|2<x<10},C={x|5-a<x<a}.
(1)求AUB,(∁RA)∩B;
(2)若C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.證明:f(x)=x3-3x在[-1,1]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)y=f(x)的定義域為{x|-3≤x≤6,且x≠4},值域為{y|-2≤y≤4,且y≠0},試作出一個符合要求的函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x∈R|ax2+2x+1=0,a∈R}.
(1)若A中只有一個元素,實數(shù)a的取值范圍;
(2)若A中至少有一個元素,實數(shù)a的取值范圍;
(3)若A中元素至多只有一個,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,已知a=2,c=7,且sinC:sinB=7$\sqrt{3}$:9,求最大角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案