5.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=4,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=2.
(1)求向量$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)若|t$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{2}$,求實數(shù)t的值.

分析 (1)向量的數(shù)量積的定義,即可求出
(2)根據(jù)向量的數(shù)量積以及向量模即可求出.

解答 解:(1)設(shè)向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
∵|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=4,
∴$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=$\overrightarrow{a}$•$\overrightarrow$-$\overrightarrow{a}$2=|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ-$\overrightarrow{a}$2=4$\sqrt{2}$cosθ-2=2,
∴cosθ=$\frac{\sqrt{2}}{2}$,
∵0≤θ≤π,
∴θ=$\frac{π}{4}$,
(2)∵|t$\overrightarrow{a}$-$\overrightarrow$|=2$\sqrt{2}$,
∴t2$\overrightarrow{a}$2-2t$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2=2t2-8t+16=8,
即t2-4t+4=0,
解得t=2.

點評 本題考查了向量的數(shù)量積的定義以及向量模的運用求向量的夾角,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,點D在邊AB上,|AD|=2|BD|,若$\overrightarrow{CA}$=$\overrightarrow a$,$\overrightarrow{CB}$=$\overrightarrow b$,則$\overrightarrow{CD}$=( 。
A.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$B.$\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$C.$\frac{3}{5}$$\overrightarrow a$+$\frac{4}{5}$$\overrightarrow b$D.$\frac{4}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的內(nèi)角A,B,C的三條對邊分別為a,b,c,且b(3b-c)cosA=$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)求cosA;
(Ⅱ)若△ABC的面積為2$\sqrt{2}$,且AB邊上的中線CM的長為2$\sqrt{2}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖所示為函數(shù)y=f′(x),y=g′(x)的導(dǎo)函數(shù)的圖象,那么y=f(x),y=g(x)的圖象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$).
(1)求函數(shù)f(x)的最值及相應(yīng)的x值;
(2)若方程f(x)-m=0在x∈[0,2π]上有兩個不同的零點x1,x2,試求x1+x2的值及相應(yīng)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.直線4x+3y-12c=0被兩坐標(biāo)軸截得的線段長為1,則c=±$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=${a}_{n}^{2}$+lna3n+1,n∈N*,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,⊙O與x軸的正半軸的交點為A,點C、B在⊙O上,且點C位于第一象限,點B的坐標(biāo)為($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α(α為銳角).
(1)求⊙O的半徑,并用角α的三角函數(shù)表示C點的坐標(biāo);
(2)若|BC|=$\sqrt{2}$,求tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求下列函數(shù)的導(dǎo)數(shù):
(1)y=4-3x2+5x4;
(2)y=$\sqrt{x}$lnx;
(3)y=excosx;
(4)y=4log3x+2x.

查看答案和解析>>

同步練習(xí)冊答案