15.在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC=$\frac{\sqrt{10}}{4}$.
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.

分析 (1)利用基本不等式得出ab的最大值,得出面積的最大值;
(2)利用正弦定理得出a,c的關(guān)系,列方程解出c,使用正弦定理解得sinA,利用余弦定理解出b.

解答 解:(1)∵a+b=5,
∴ab≤($\frac{a+b}{2}$)2=$\frac{25}{4}$.
∴S△ABC=$\frac{1}{2}ab$sinC=≤$\frac{1}{2}×\frac{25}{4}×\frac{\sqrt{10}}{4}$=$\frac{25\sqrt{10}}{32}$.
(2)∵2sin2A+sinAsinC=sin2C,
∴2a2+ac=c2.即8+2c=c2
解得c=4.
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,即$\frac{2}{sinA}=\frac{4}{\frac{\sqrt{10}}{4}}$,
解得sinA=$\frac{\sqrt{10}}{8}$.∴cosA=$\frac{3\sqrt{6}}{8}$.
由余弦定理得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{3\sqrt{6}}{8}$.即$\frac{^{2}+12}{8b}=\frac{3\sqrt{6}}{8}$.
解得b=$\sqrt{6}$或2$\sqrt{6}$.

點評 本題考查了基本不等式,正余弦定理,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等差數(shù)列{an}的公差d≠0,{an}中的部分項組成的數(shù)列a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,a${\;}_{{k}_{3}}$,…,a${\;}_{{k}_{n}}$,…恰好為等比數(shù)列,其中k1=3,k2=5,k3=17,求數(shù)列{kn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x2+2cosx,x∈(0,π),π>a>b>0,設(shè)m=f($\sqrt{\frac{{a}^{2}+^{2}}{2}}$),n=f($\sqrt{ab}$),t=f($\frac{a+b}{2}$),則m,n,t的大小關(guān)系為m>t>n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在(x2-x+1)11的展開式中,x3項的系數(shù)是-275.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-2x-3>0},B={x|x2+ax+b≤0},A∪B=R,A∩B={x|3<x≤4}.
(1)求a,b的值;
(2)求不等式ax2+bx-1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和為Sn,a1=1,對于任意的n∈N*都有Sn+1-3Sn-1=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn•an=n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.C331+C332+C333+…+C3333除以9的余數(shù)是( 。
A.7B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個非零向量(  )
A.若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$|-|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|B.若$\overrightarrow{a}$∥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|
C.若|$\overrightarrow{a}$|-|$\overrightarrow$|<|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$不共線D.若$\overrightarrow{a}$,$\overrightarrow$不共線,則|$\overrightarrow{a}$+$\overrightarrow$|<|$\overrightarrow{a}$|+|$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知:命題p:函數(shù)y=ax(a>0,且a≠1)為R上的單調(diào)遞減函數(shù),命題q:函數(shù)y=lg(ax2-x+a)值域為R,若“p且q”為假,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案