14.某同學(xué)寒假期間對(duì)其30位親屬的飲食習(xí)慣進(jìn)行了一次調(diào)查,列出了如下2×2列聯(lián)表:
偏愛(ài)蔬菜偏愛(ài)肉類(lèi)合計(jì)
50歲以下4812
50歲以上16218
合計(jì)201030
則可以說(shuō)其親屬的飲食習(xí)慣與年齡有關(guān)的把握為( 。
附:參考公式和臨界值表${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
k2.7063.8416.63610.828
P(K2>k)0.100.050.0100.001
A.90%B.95%C.99%D.99.9%

分析 計(jì)算觀測(cè)值,與臨界值比較,即可得出結(jié)論.

解答 解:設(shè)H0:飲食習(xí)慣與年齡無(wú)關(guān).
因?yàn)镵2=$\frac{30×(4×2-16×8)^{2}}{12×18×20×10}$=10>6.635,
所以有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān).
故選:C.

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn),考查學(xué)生利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,利用公式計(jì)算觀測(cè)值是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a5=-3,S6=2a4-5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{2-{a_n}}}-n$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若a=log23,b=log45,$c={2^{\frac{3}{2}}}$,則a,b,c滿(mǎn)足( 。
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.過(guò)點(diǎn)(1,2),且傾斜角為60°的直線(xiàn)方程是( 。
A.y+2=$\sqrt{3}$(x+1)B.y-2=-$\sqrt{3}$(x-1)C.y-2=$\sqrt{3}$(x-1)D.y+2=-$\sqrt{3}$(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|-4≤x≤9},B={x|m+1<x<2m-1},若A∪B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.等差數(shù)列{an}中,已知a3+a8=12,那么S10的值是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)$f(x)={log_2}({{x^2}+a})$的值域?yàn)镽,則實(shí)數(shù)a的取值范圍為{a|a≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某單位為了了解用電量y度與氣溫x℃之間的關(guān)系,統(tǒng)計(jì)了某4天的用電量與當(dāng)天氣溫,數(shù)據(jù)如表
氣溫(℃)181310-1
用電量(度)24343864
由表中數(shù)據(jù)可得線(xiàn)性回歸方程$\hat y=bx+a$中的b=-2,預(yù)測(cè)當(dāng)氣溫為5℃時(shí),該單位用電量的度數(shù)約為50度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)求證:函數(shù)f(x)=x+$\frac{4}{x}$在[2,+∞)上是增函數(shù);
(2)已知函數(shù)f(x)=x+$\frac{a}{x}$有如下性質(zhì):若常數(shù)a>0,那么該函數(shù)在$(0,\sqrt{a}]$上是減函數(shù),在$[\sqrt{a},+∞)$上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案