2.過點(diǎn)(1,2),且傾斜角為60°的直線方程是( 。
A.y+2=$\sqrt{3}$(x+1)B.y-2=-$\sqrt{3}$(x-1)C.y-2=$\sqrt{3}$(x-1)D.y+2=-$\sqrt{3}$(x+1)

分析 利用點(diǎn)斜式即可得出.

解答 解:過點(diǎn)(1,2),且傾斜角為60°的直線方程是y-2=tan60°(x-1),
化為y-2=$\sqrt{3}$(x-1),
故選:C.

點(diǎn)評(píng) 本題考查了直線的點(diǎn)斜式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=$\frac{1}{2}$(|x+$\frac{1}{2}$tanα|+|x+tanα|+$\frac{3}{2}$tanα)(α為常數(shù),且-$\frac{π}{2}$<α<$\frac{π}{2}$),若?x∈R,都有f(x-3)≤f(x)恒成立,則實(shí)數(shù)α的取值范圍是-$\frac{π}{4}$≤α<$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,當(dāng)n≥2時(shí),Sn=2an
(1)求證數(shù)列{an}為等比數(shù)列,并求出an的通項(xiàng)公式;
(2)設(shè)若bn=an+1-1,設(shè)數(shù)列{an•bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知θ∈(0,2π)且$cos\frac{θ}{2}=\frac{1}{3}$,則tanθ的值為-$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2x+2$\sqrt{3}sinxcosx+3{cos^2}$x,x∈R.
(1)求函數(shù)f(x)的值域;
(2)y=f(x)的圖象可由y=sin2x的圖象經(jīng)過怎樣的變換得到?寫出你的變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.兩平行直線4x+3y-5=0與4x+3y=0的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某同學(xué)寒假期間對(duì)其30位親屬的飲食習(xí)慣進(jìn)行了一次調(diào)查,列出了如下2×2列聯(lián)表:
偏愛蔬菜偏愛肉類合計(jì)
50歲以下4812
50歲以上16218
合計(jì)201030
則可以說其親屬的飲食習(xí)慣與年齡有關(guān)的把握為(  )
附:參考公式和臨界值表${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
k2.7063.8416.63610.828
P(K2>k)0.100.050.0100.001
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|x2<3x},N={x|lnx<0},則集合M∩N=( 。
A.(-2,0]B.(0,1)C.(2,3]D.(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.“開門大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.
(I)寫出2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱是否與年齡有關(guān);說明你的理由;(下面的臨界值表供參考)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(2)現(xiàn)計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段用分層抽樣的方法選取6名選手,并從這6名選手中抽取2名幸運(yùn)選手,求2名幸運(yùn)選手中至少有一人在20~30歲之間的概率.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊(cè)答案