19.如圖,PC切⊙O于點C,割線PAB經(jīng)過圓心D,作∠BPC的平分線交CB于點D.
(1)求證:CD=CE.
(2)若PA=2,PC=5,求AC的長.

分析 (1)利用圓的切線的性質(zhì)、角平分線的性質(zhì),證明∠CDE=∠CED,即可證明:CD=CE.
(2)利用切割線定理,結(jié)合條件證明△PCA∽△PBC,利用勾股定理,求AC的長.

解答 (1)證明:∵PC是⊙O的切線,∴∠PCE=∠B,
∵PD平分∠BPC,∴∠CPD=∠BPD,
∵∠CDE=∠B+∠BPD,∠CED=∠PCE+∠CPD,
∴∠CDE=∠CED,
∴CD=CE.    …(5分)
(2)∵PC是切線,∴PC2=PA•PB,
∵PA=2,PC=4,∴PB=8,
∴AB=6,
∵∠PCA=∠B,∠APC=∠CPB,
∴△PCA∽△PBC,
∴$\frac{AC}{BC}=\frac{PA}{PC}$=$\frac{1}{2}$,
設(shè)AC=x,則BC=2x,
∵AB是直徑,∴∠ACB=90°.
根據(jù)勾股定理可得AB=$\sqrt{5}$x,
∴$\sqrt{5}$x=6,∴x=$\frac{6\sqrt{5}}{5}$,即AC=$\frac{6\sqrt{5}}{5}$,…(10分)

點評 本題考查圓的切線的性質(zhì)、角平分線的性質(zhì),考查切割線定理,三角形相似的判定與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線x2=4y,斜率為k的直線l過其焦點F且與拋物線相交于點A(x1,y1),B(x2,y2
(1)求直線L的一般式方程;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=mlnx+$\frac{m^2}{x}$(其中m為常數(shù)),且x=1是f(x)的極值點.
(Ⅰ)設(shè)曲線y=f(x)在($\frac{1}{e}$,f($\frac{1}{e}$))處的切線為l,求l與坐標軸圍成的三角形的面積;
(Ⅱ)求證:f(x)>4f′(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.黃岡中學(xué)邀請一批專家來為理科實驗班的學(xué)生舉辦5期知識講座,其中Q大學(xué)教授3人,不參加最后一期講座,B大學(xué)教授2人,不參加相鄰兩期講座,則共有36種安排方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.rn,n是不同的直線,α,β是不重合的平面,下列說法正確的是( 。
A.若α∥β,m?α,n?β,則m∥n
B.若m,n?α,m∥β,n∥β,則α∥β
C.m,n是異面直線,若m∥α,m∥β,n∥β,則α∥β
D.若α∥β,m∥α,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若曲線C為到點(0,1)和(0,-1)距離之和為4的動點的軌跡,則曲線C的方程為$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知正方體ABCD-A1B1C1D1的棱長為1,點O是BD1的中點,M是棱AA1上的一點,請問:
(1)若M是AA1的中點,求直線MO與AD1所成角的大小;
(2)若M在線段AA1(不為點A)上運動,試求三棱錐M-ABD1體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若對x>0,y>0,有$\frac{2}{x}$+$\frac{1}{y}$≥$\frac{m}{x+2y}$恒成立,則實數(shù)m的取值范圍是m≤8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{4x}{2+x}$,數(shù)列{an}滿足a1=f(1),an+1=f(an).
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}是等比數(shù)列;
(2)不等式$\frac{2}{{a}_{1}}$+$\frac{{2}^{2}}{{a}_{2}}$+…+$\frac{{2}^{n}}{{a}_{n}}$≥t+$\frac{n}{2}$,n∈N*恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案