已知一條確定線段AB與平面α成60°角,點A、點C在平面α內(nèi),若△ABC面積一定,證明:點C的運動軌跡是橢圓.
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知條件推導出點C到線段AB的距離不變,由此得到點C在以AB為軸的圓柱體的側(cè)面上,從而能夠證明點C的運動軌跡是橢圓.
解答: 證明:∵一條確定線段AB與平面α成60°角,
點A、點C在平面α內(nèi),且△ABC面積一定,
∴點C到線段AB的距離不變,
∴點C在以AB為軸的圓柱體的側(cè)面上,
由一條確定線段AB與平面α成60°角,
知這個以AB為軸的圓柱體與平面α相交但不垂直,
∴點C的運動軌跡是橢圓.
點評:本題考查點的運動軌跡是橢圓的證明,是中檔題,解題時要認真審題,要熟練掌握橢圓概念.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖、主視圖、左視圖、俯視圖如圖,M、N分別為A1B、B1C1的中點.下列結(jié)論中正確的個數(shù)有( 。
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1
④三棱錐N-A1BC的體積為VN-A1BC=
1
6
a3
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1.f(logax)=
a
a2-1
(x-x-1)

(1)求f(x)的解析式;
(2)判斷f(x)的奇偶性與單調(diào)性;
(3)對于f(x),當x∈(-2,2)時,f(1-m)+f(1-2m)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 
1
2
(ax2+2x+a-1)
的值域是[0,+∞),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)g(x)=ax2-2ax+b+1(a>0)在區(qū)間[2,3]上有最大值4,最小值1.
(1)求函數(shù)g(x)的解析式;
(2)設(shè)f(x)=
g(x)
x
.若f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,已知a1=1,an+1=2an+4,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
2
+y2=1
,M(0,
1
2
)是y軸上的定點,P在橢圓上,則線段PM的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程x2sinα-y2cosα=1(0≤α<2π)表示焦點在x軸上的橢圓,則α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
16-4x
+log2(2x+1)
的定義域是
 

查看答案和解析>>

同步練習冊答案