9.已知$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{10{C}_{7}^{m}}$,則C${\;}_{8}^{m}$+C${\;}_{8}^{5-m}$=84.

分析 由已知等式展開求得m值,然后代入C${\;}_{8}^{m}$+C${\;}_{8}^{5-m}$得答案.

解答 解:由$\frac{1}{{C}_{5}^{m}}$-$\frac{1}{{C}_{6}^{m}}$=$\frac{7}{10{C}_{7}^{m}}$,得$\frac{m!(5-m)!}{5!}-\frac{m!(6-m)!}{6!}=\frac{7m!(7-m)!}{10•7!}$,
即$(5-m)!-\frac{(6-m)!}{6}=\frac{(7-m)!}{60}$,得60-10(6-m)=(6-m)(7-m),
整理得:m2-23m+42=0,解得m=21(舍)或m=2.
∴C${\;}_{8}^{m}$+C${\;}_{8}^{5-m}$=${C}_{8}^{2}+{C}_{8}^{3}$=28+56=84.
故答案為:84.

點(diǎn)評 本題考查組合及組合數(shù)公式,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某同學(xué)在用120分鐘做150分的數(shù)學(xué)試卷(分為卷Ⅰ和卷Ⅱ兩部分)時(shí),卷Ⅰ和卷Ⅱ所得分?jǐn)?shù)分別為P和Q(單位:分),在每部分至少做了20分鐘的條件下,發(fā)現(xiàn)它們與投入時(shí)間m(單位:分鐘)的關(guān)系有經(jīng)驗(yàn)公式$P=\frac{1}{5}m+36$,$Q=65+2\sqrt{3m}$.
(1)求數(shù)學(xué)總成績y(單位:分)與對卷Ⅱ投入時(shí)間x(單位:分鐘)的函數(shù)關(guān)系式及其定義域;
(2)如何計(jì)算使用時(shí)間,才能使所得分?jǐn)?shù)最高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.里氏地震M的計(jì)算公式為:M=lgA-lgA0,其中A測震儀記錄的地震曲線的最大振幅,A0是相應(yīng)的標(biāo)準(zhǔn)地震的振幅,則7級地震的最大振幅是4級地震最大振幅的103倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若正項(xiàng)等比數(shù)列{an}滿足a1=1,a4=2a3+3a2,則an=3n-1.其前n項(xiàng)和Sn=$\frac{1}{2}({3}^{n}-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.?dāng)?shù)列{an}中,a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n}+2}$,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.△ABC的三角形A,B,C所對三邊分別是a,b,c,B=60°,cosC=$\frac{4}{5}$,b=$\sqrt{3}$,則sinA=$\frac{3+4\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出六個(gè)關(guān)系式:①0∈∅;②∅∈{∅};③∅?{0};④∅≠{∅};⑤∅?{∅};⑥∅≠{0}.其中正確命題的個(gè)數(shù)是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)求正整數(shù)列前n個(gè)偶數(shù)的和;
(2)求正整數(shù)列前n個(gè)奇數(shù)的和;
(3)在三位正整數(shù)的集合中有多少個(gè)數(shù)是5的倍數(shù)?求它們的和.
(4)在正整數(shù)集合中有多少個(gè)三位數(shù)?求它們的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(Ⅰ)求證:MB∥平面PDC;
(Ⅱ)求二面角M-PC-D的余弦值;
(Ⅲ)E為線段PC上一點(diǎn),若直線DE與直線PM所成的角為60°,求PE的長.

查看答案和解析>>

同步練習(xí)冊答案