8.已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x3-x-1,則當(dāng)x<0時(shí),f(x)=x3-x+1.

分析 可設(shè)x<0,從而-x>0,這樣根據(jù)f(x)為奇函數(shù)以及x>0時(shí)f(x)的解析式便可得到f(-x)=-x3+x-1=-f(x),從而求出f(x)便可得出x<0時(shí)的f(x)的解析式.

解答 解:設(shè)x<0,-x>0,則:
f(-x)=-x3+x-1=-f(x);
∴f(x)=x3-x+1.
故答案為:x3-x+1.

點(diǎn)評 考查奇函數(shù)的定義,以及對于奇函數(shù),已知一區(qū)間上的f(x)的解析式,求其對稱區(qū)間上的f(x)的解析式的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)y=5sin3x-12cos3x的周期和最大值分別是$\frac{2π}{3}$;13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)P是直線l:y=2x+3上任一點(diǎn),M(4,-1),則|PM|的最小值為$\frac{12\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若點(diǎn)P(1,1)在圓x2+y2+2x+4y+a=0外,則a的取值范圍是( 。
A.a<-8B.a>-8C.-8<a<5D.a<-8或a>5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若命題“?x0∈R,x${\;}_{0}^{2}$+2ax0+2-a=0是假命題”,則實(shí)數(shù)a的取值范圍是-2<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)在(-∞,2]上為減函數(shù),且f(x+2)是R上的偶函數(shù),若f(a)≥f(3),則實(shí)數(shù)a的取值范圍是a≤1或a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知圓C1:x2+y2+4x=0,圓C2:x2+y2-4x-60=0,動(dòng)圓 M和圓C1外切,和圓C2內(nèi)切,則動(dòng)圓圓心M的軌跡方程為$\frac{x^2}{25}+\frac{y^2}{21}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校為了調(diào)查“學(xué)業(yè)水平考試”學(xué)生的數(shù)學(xué)成績,隨機(jī)地抽取該校甲、乙兩班各10名同學(xué),獲得的數(shù)據(jù)如下:(單位:分)
132108112121113121118127118129
133107120113122114125118129127
(1)以百位和十位為莖,個(gè)位為葉,在圖中作出甲、乙兩班學(xué)生數(shù)學(xué)成績的莖葉圖,并判列哪個(gè)班的平均水平較高;
(2)若數(shù)學(xué)成績不低于128分,稱為“優(yōu)秀”,求從甲班這10名學(xué)生中隨機(jī)選取3名,至多有1名“優(yōu)秀”的概率.
(3)以這20人的樣本數(shù)據(jù)來估計(jì)整個(gè)學(xué)校的總體成績,若從該校(人數(shù)很多)任選3人,記X表示抽到“優(yōu)秀”學(xué)生的人數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}通項(xiàng)an=10n(n∈N*),${b_n}=\frac{1}{{lg{a_n}•lg{a_{n+2}}}}$,則數(shù)列{bn}前n項(xiàng)和為( 。
A.$1-\frac{1}{n+2}$B.$1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}$
C.$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$D.$2(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$

查看答案和解析>>

同步練習(xí)冊答案