13.表面積為4π的球O放置在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1上,且與上表面A1B1C1D1相切,球心在正方體上表面的射影恰為該表面的中心,則四棱錐O-ABCD的外接球的半徑為( 。
A.$\frac{10}{3}$B.$\frac{33}{10}$C.$\frac{23}{6}$D.$\frac{41}{12}$

分析 球O的半徑為1,四棱錐O-ABCD的底面邊長(zhǎng)為4,高為5,設(shè)四棱錐O-ABCD的外接球的半徑為R,利用勾股定理,建立方程,即可求出四棱錐O-ABCD的外接球的半徑.

解答 解:表面積為4π的球O的半徑為1,
∴四棱錐O-ABCD的底面邊長(zhǎng)為4,高為5,
設(shè)四棱錐O-ABCD的外接球的半徑為R,
則R2=(5-R)2+(2$\sqrt{2}$)2,
∴R=$\frac{33}{10}$.
故選:B.

點(diǎn)評(píng) 本題考查球的體積的計(jì)算,考查學(xué)生的計(jì)算能力,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則y=f(x)的圖象可能( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.以(-2,1)為圓心且與直線x+y=3相切的圓的方程為( 。
A.(x-2)2+(y+1)2=2B.(x+2)2+(y-1)2=4C.(x-2)2+(y+1)2=8D.(x+2)2+(y-1)2=8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.甲、乙、丙、丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x≥0)的函數(shù)關(guān)系式分別為f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論:
①當(dāng)x>1時(shí),甲走在最前面;
②當(dāng)x>1時(shí),乙走在最前面;
③當(dāng)0<x<1時(shí),丁走在最前面,當(dāng)x>1時(shí),丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動(dòng)下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號(hào)為③④⑤(把正確結(jié)論的序號(hào)都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=cosωxcosθ+sinωxsinθ(ω≠0),對(duì)任意x都有f(x)=f($\frac{2π}{3}$-x),則f($\frac{π}{3}$)=( 。
A.1或0B.-1或1C.0D.-1或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C:x2+y2+Dx+Ex+3=0關(guān)于直線x+y-1=0對(duì)稱,圓心在第二象限,半徑為$\sqrt{2}$.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A(3,5)向圓C引切線,求切線的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}中,a1=1,an+1=an+$\frac{1}{n}$,則a4=$\frac{17}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα+sinα}\\{y=2\sqrt{3}sinαcosα-2si{n}^{2}α+2}\end{array}\right.(α為參數(shù))$,若以直角坐標(biāo)系中的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線N的極坐標(biāo)方程為ρsin($θ+\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(t為參數(shù)).
(1)求曲線M和直線N的直角坐標(biāo)方程;
(2)若直線N與曲線M有公共點(diǎn),求參數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex,g(x)=1nx+m.
(1)當(dāng)m=-1時(shí),求函數(shù)F(x)=$\frac{f(x)}{x}$+x•g(x)在(0,+∞)上的極值;
(2)若m=2,求證:當(dāng)x∈(0,+∞)時(shí),f(x)>g(x)+$\frac{1}{10}$.
(參考數(shù)據(jù):ln2=0.693,ln3=1.099)

查看答案和解析>>

同步練習(xí)冊(cè)答案