13.在平面直角坐標(biāo)系xOy中,設(shè)直線x-y+2$\sqrt{2}$=0與圓x2+y2=r2(r>0)交于A、B兩點(diǎn),其中O為坐標(biāo)原點(diǎn),C為圓上一點(diǎn),若$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,則r=4.

分析 由已知得r2=r2+r2+2r2cos∠AOB,從而∠AOB=120°,求出圓心(0,0)到直線x-y+2$\sqrt{2}$=0的距離,由此能求出半徑r.

解答 解:∵直線x-y+2$\sqrt{2}$=0與圓x2+y2=r2(r>0)交于A、B兩點(diǎn),其中O為坐標(biāo)原點(diǎn),C為圓上一點(diǎn),$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,
∴${\overrightarrow{OC}}^{2}={\overrightarrow{OA}}^{2}+{\overrightarrow{OB}}^{2}+2\overrightarrow{OA}•\overrightarrow{OB}•cos∠AOB$,
∴r2=r2+r2+2r2cos∠AOB,
解得∠AOB=120°,
∵圓心(0,0)到直線x-y+2$\sqrt{2}$=0的距離d=$\frac{|0-0+2\sqrt{2}|}{\sqrt{1+1}}$=2,
∴r=2d=4.
故答案為:4.

點(diǎn)評(píng) 本題考查圓的半徑的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“x=1”是“x2-1=0”的( 。
A.充分必要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知△ABC中,D是△ABC外接圓劣弧$\widehat{AC}$上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至E,且AD的延長線平分∠CDE.
(1)求證:AB=AC;
(2)若∠BAC=30°,△ABC中BC邊上的高為4+2$\sqrt{3}$,求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知某車間加工零件的個(gè)數(shù)x與所花費(fèi)時(shí)間y(h)之間的線性回歸方程為 $\stackrel{∧}{y}$=0.01x+0.5,則加工600個(gè)零件大約需要的時(shí)間為 ( 。
A.6.5hB.5.5hC.3.5hD.0.5h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,若 c2-b2=$\sqrt{3}$ab,sinA=2$\sqrt{3}$sinB,則角C=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={0,a},B={0,1,3},若A∪B={0,1,2,3},則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=xsinx,則$f'(\frac{π}{2})$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.宋元時(shí)期杰出的數(shù)學(xué)家朱世杰在其數(shù)學(xué)巨著《四元玉鑒》卷中“茭草形段”第一個(gè)問題“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.問底子(每層三角形邊茭草束數(shù),等價(jià)于層數(shù))幾何?”中探討了“垛枳術(shù)”中的落一形垛(“落一形”即是指頂上1束,下一層3束,再下一層6束,…,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層茭草束數(shù)),則本問題中三角垛底層茭草總束數(shù)為120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)等比數(shù)列{an}的公比為q,若Sn,Sn-1,Sn+1成等差數(shù)列,則$\frac{{a}_{5}+{a}_{7}}{{a}_{3}+{a}_{5}}$=4.

查看答案和解析>>

同步練習(xí)冊答案