11.設(shè)a,b,c大于0,則3個(gè)數(shù):$a+\frac{1}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1的值(  )
A.都大于3B.至多有一個(gè)不大于3
C.都小于3D.至少有一個(gè)不小于3

分析 利用反證法:假設(shè)3個(gè)數(shù):$a+\frac{1}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1都小于3,再利用基本不等式的性質(zhì)得出矛盾.

解答 解:假設(shè)3個(gè)數(shù):$a+\frac{1}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1都小于3,
則9>$a+\frac{1}$+1+$b+\frac{1}{c}$+1+$c+\frac{1}{a}$+1≥3+2$\sqrt{a×\frac{1}{a}}$+2$\sqrt{b•\frac{1}}$+2$\sqrt{c•\frac{1}{c}}$=9,
推出矛盾,因此假設(shè)不成立.
∴3個(gè)數(shù):$a+\frac{1}$+1,$b+\frac{1}{c}$+1,$c+\frac{1}{a}$+1的值至少有一個(gè)不小于3.
故選:D.

點(diǎn)評(píng) 本題考查了反證法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρcos2θ=2sinθ,過點(diǎn)P(0,1)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與軌跡C交于M,N兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.拋物線y2=2x上兩點(diǎn)A,B,已知AB的中點(diǎn)在直線x=2上,F(xiàn)為拋物線焦點(diǎn),則|AF|+|BF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線$ax+\frac{1}{a}y+2=0$與圓x2+y2=r2相切,則圓的半徑最大時(shí),a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,且anan+1+an+1-2an=0(n∈N).
(1)求a2,a3,a4的值;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)(2+i)(1-i)等于(  )
A.1-iB.2-iC.3+iD.3-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到y(tǒng)軸距離之和最小值是$\sqrt{17}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線y=kx+1,當(dāng)k變化時(shí),此直線被橢圓$\frac{{x}^{2}}{4}$+y2=1截得的最大弦長是(  )
A.4B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,橢圓的四個(gè)頂點(diǎn)所圍成菱形的面積為$8\sqrt{2}$.
(Ⅰ)求圓的方程;
(Ⅱ)四邊形ABCD的頂點(diǎn)在橢圓C上,且對(duì)角線AC,BD均過坐標(biāo)原點(diǎn)O,若${k_{AC}}•{k_{BD}}=-\frac{1}{2}$.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍;
(2)證明:四邊形ABCD的面積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案